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ABSTRACT

Fault diagnosis is particularly important in mechanical engineering systems, where early detection of problems can save costs
and time. Traditional fault diagnosis methods rely heavily on features extracted by expert experience, but with the development
of intelligent manufacturing, deep learning provides an effective idea for automatically extracting data features. Convolutional
neural networks are very effective deep learning methods. In this study, an improvement scheme of convolutional neural network
Alexnet algorithm is presented. First, the rolling bearing vibration signal is converted to a symmetric snowflake image in polar
coordinates according to the symmetrized dot pattern (SDP) principle. Then, it is fed into the CNN, and the fault feature is
extracted. The impact of manual feature extraction is eliminated. According to the ratio of accuracy and time proposed in this
paper, the size of each layer of convolution kernel is adjusted accordingly to determine the optimal model, and test experiments
are carried out to verify the robustness of the method under different bearing conditions, and the accuracy rate reaches 98.5%.
Comparison with other methods shows that the proposed method has achieved significant improvement.

Keywords: Rolling bearing, Symmetrized Dot Pattern, convolutional neural network, fault diagnosis.

Introduction introduces how to better use Western Reserve University bearing
data, which is a representative article in this field [3]. Previously,
the traditional fault diagnosis was first based on manual feature
extraction by experts, which was extremely tedious. Later, with
the development of artificial intelligence technology, machine
learning such as Support Vector Machine (SVM) [4], k-nearest
neighbour (KNN) [5], BP neural network [6][7], etc. Although
these methods have gained some effect in the area of fault
diagnosis, the shallow network structure is hard to obtain the
deep feature information and reduces the accuracy of rolling
bearing fault diagnosis. The increasing maturity of deep learning
theory and the continuous improvement of computer computing
power has led to a wide range of applications of convolutional
neural networks in fault diagnosis. Among these, CNN has
strong prediction and classification functions. Han proposed a

In the cement production industry, rolling bearings are
common parts of rotating equipment, and their health status affect
the safety of the installation, stability, and reliability. Equipment
by along-time load operation and the harsh working environment,
rolling bearing small failure is difficult to directly go to observe,
if not timely maintenance, it will cause serious losses. Therefore,
it is vital to realize the accurate identification of rolling bearing
health status. Rolling bearing fault diagnosis is divided into
data acquisition, pre-processing, feature extraction, and fault
classification [1,2]. In the past decades, scholars have published
a large number of articles on rolling bearing fault diagnosis, and
these materials are very important references for future research.
For example, scholars used Western Reserve University data
as the research object of bearing failure, and this literature
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combination of convolutional neural network and SVM, using
the time domain map of rolling bearings as input, to classify and
diagnose faults through CNN feature extraction [8]. Anovel fault
diagnosis method combining morphable CNN and Long-Short
Term Memory (LSTM) with each other was proposed by Wang
[9]. Zhao presented normalized convolutional neural networks to
diagnose different faults to consider the magnitude and directions
of data imbalances and variable operating conditions [10]. The
detection of complicated signals by using CNN was presented
by Lu [11], which transformed the raw signal into an image,
and put these into the CNN for categorization. There are very
many models of CNN such as Lenet—5, Alexnet, and Googlenet
models, etc. Many scholars use these models to classify and
compare rolling bearings. Rakibul Islam used lenet—5 model to
classify and identify CT images of new coronary pneumonia [12].
Yilmaz used AlexNet, GooglLeNet and ResNe—50 to classify
and identify images of his skin necrosis in the differential
diagnosis of benign and malignant [13]. After understanding,
we realize that CNN -based fault diagnosis methods usually
require a large number of images, which can easily cause errors
if the number is insufficient. To resolve this issue, Yu proposed
a One-Dimension Residual Convolutional Auto-Encoder(1—
DRCAE) [14]. From the raw vibrational signal, the encoder can
rebuild the signal by the reverse pleat product operation, and
ultimately utilize the residuals to learn the features. To resolve
this issue of Multi conditions integration, Zhao proposes a
framework for deep multi-scale CNN (MSCNN) based on
primitive extended convolution [15]. Yuan proposed CNN and
SVM. Above all, the continuous wavelet transform is used to turn
the 1D raw vibration signal into a 2D temporal frequency image
[16]. In addition, the acquired temporal frequency image inputs
are trained. In the end, the diagnostics of the fault position and
severity are accomplished. These methods provide an effective
classification of the kinds of rolling bearing failures.

In the latest years, with the successful application of Al
technology in the domain of facial identification and other image
identification various transformations in bearing vibration
signals to two-dimensional images have also gradually emerged.
Li proposed a method based on WPT and CNN for solving
bearing fault diagnosis without human intervention [17]. A fault
diagnosis method based on Deep Convolutional Auto Encoder
(DCAE) and Convolutional Neural Network (CNN) for the
rolling bearing of helicopter auto-tilter with complex working
conditions and high noise interference by Wan [18]. Besides, Gu
proposed a method for bearings in different conditions by various
terms by angular domains re-sampling, SDP, and DCNN [19].
The fault diagnosis method by using the EMD and Chebyshev
distance in SDP image to solve problems by Sun [20][21]. Xu
proposes hybrid deep learning combining CNN and gcForest
[22]. Chen proposed that they choose the ResNet -50 as a
pre-trained model network for DCNN and based on the idea
of migration to solve the bearing fault classification problem
learning [23]. First, the original fault signal is turned into a
temporal frequency figure transform using continuous wavelets.
Then, the image is further converted to RGB format as in- put
to Discrete-Time CNN (DTCNN). Sun proposes a new metric
to determine the convolutional neural network model based
on accuracy and time ratio [24]. Xu developed an improved
Multi-Scale CNN integrated with a Feature Attention Mecha
(IMS-FACNN) algorithm that integrated CNN to solve the
heritage CNN models in unstable and complicated conditions
[25].
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For the sake of solving the running time conditions under high
precision, this paper proposes a diagnosis method combining
SDP images and improved Alexnet. This paper proposes a
novel assessing index comprising accuracy and running time
to help determine the optimal structure of the convolutional
neural network Alexnet. The second part details the design and
introduction of the current scheme of the new fault diagnosis
method; the third part identifies the experimental installation
and carries out a comparative experiment to determine the
optimal structure of the Alexnet model, the fourth part compares
and analyzes its results into. Finally, the work of this paper is
summarized.

Basic Theoretical Analysis
Symmetrized dot pattern

Compared with the traditional method of converting signals
into time-frequency images, the following three formulas convert
one-dimensional vibration signals into symmetrical shapes
in polar coordinate systems, and extract the characteristics of
snowflake shapes from the perspective of image processing.
The following is the calculation process. In the discrete data of
vibration signal, the vibration amplitude of moment n is x_and
the vibration amplitude of moment n + / is x . By using these
SDP formulas, a symmetric image in the polar coordinate space
ply(m),0(n),¢(n)] is obtained. the schematic diagram of SDP is
shown in fig.1.

}/(TL) _ Xn = Xmin

1
Xmax — ¥min (1
Xn+l — Ymin
B(n) =6+ g 2
Xmax — Xmin ()
(}‘)(TL) -9 Xt __xmin g 3)

Xmax min

Where y(n) represents the radius in the polar coordinate
system; 6(n) represents the angle of rotation of the polar
coordinates counterclockwise along the initial line; ¢(n) while is
the angle of rotation of the polar coordinates clockwise along the
initial line. Here, x  and x  are the minimum value and the
maximum in the discrete sequence of vibration signals; g is the
angle amplification factor, 6 is the rotation angle of the mirror
plane of symmetry, and / is the time interval of the parameter.
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Figure 1: SDP schematic diagram.
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Convolutional neural network

In recent years, Convolutional neural network (CNN) has
been widely used in the field of fault diagnosis because of their
great advantages in image recognition. CNN is a type of neural
network specifically designed to cope with data with a reticular
formation. Recently, CNN has been widely used due to the huge
superiority in fault classification. The CNN model is formed of
five layers. As shown in fig.2.

» Input Layer. The image to be recognized is preprocessed for
input.

* Convolutional Layer. The convolutional layer is unique to
CNN. The formula is shown in eq.4.

)

+  Where X/ refers to the output feature image j in the current
layer /. K}j is convolution kernel and b} is bias. R, is the
congregate of input characteristic images. X/™" is the output
feature image j in the current layer /.

* Maxpool Layer: Use pooling layers to reduce the size of
the model and increase the speed of computation while
improving the robustness of the extracted features. The
purpose of maximum pooling is to retain the original features
while reducing the parameters of neural network training, so
that the training time is reduced.

e Fully Connected Layer: The fully connection layer can
combine the local information with the classification in
the convolution layers or pooling layers to improve the
performance of the network. The fully connected layer is the
traditional neutral network. It can be expressed as:

l _ l -1 1 )
Xf = o(W} « X;™" +by) 4

where o() is the activation function and W} is the weight. The
other parameters are the same as above.

*  Output layer: The output layer is passed through the Softmax
layer to obtain the problems of a probability distribution for
which the current sample belongs to different kinds.

Structure optimization index

Accuracy and running time are very important for the CNN
model. So, a metric on time and accuracy is used to describe the
structure of CNN, as shown in eq.7.

acc
Inew = t

)

tmax

Where acc is the accuracy of the CNN in solving the rolling
bearing faults, ¢ is the time taken for the whole model to end its
work, and ¢ _is the maximum amount of time it takes to run this
Alexnet. This indicator of time and accuracy is used to evaluate
the various structure of CNN. The various layers are reflected
in the size of the convolutional kernel. This formula essentially
normalizes the running time by unitizing it, thus eliminating the
effect of time units, and thus allowing to express the accuracy
achieved per unit time.
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Figure 2: Structure of a CNN model.
Simulation experiment

Experimental apparatus and data acquisition
Experimental equipment

The test rig is illustrated in fig.3. It includes a 1.5kW motor, a
power tester, and a torque transmitter. The sampling frequency is
set to 12kHZ, and the motor load is between 0 and 3 horsepower.
The diameters of bearing were 0.1778 mm, 0.3556 mm, and
0.5334 mm. Many different kinds of rolling bearings which
are composed of are used to test. Damage bearing components
by using EDM for the sake of getting the bearing failure data.
To collect the vibration signals of these fault bearings, people
placed the sensor on the bearing at the drive end.

— n 4
fr=z3 )
1 d
fic = EZ(l +Bcosa{) fr 0
1 d
foc = EZ(I - Bcosa) I n

Figure 3: Bearing test bench.

Where the characteristic frequency of each part of the rolling
bearing can be got. Further, the frequency and the characteristic
orders of the fault features can be obtained. The damaged rolling
bearings were placed on the test rig. Experiments were carried
out under different horsepower to collect vibration signals. In
this paper, ten sets of data were selected, including one set of
normal data, three sets of outer ring fault data, three sets of
rolling element fault data, and three sets of inner ring fault data.
The CPU is Intel Core i5 7300HQ, and the graphics card is
NVIDIA GeForce GTX 1050. The software used to run Alexnet
model in MATLAB R2019a.

Data acquisition

In this paper, to test the diagnosis of multiple working
conditions, we selected 10 working conditions, one of which
is normal, and the other selected outer ring failure, inner ring
failure and rolling body failure with different damage radius.
To ensure that there are enough data sets, we select 3000 sets
of data to train and validate this model. Figure 4 shows the
images of the selected time domain signals for the ten operating
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conditions, which paves the way for subsequent conversion into
SDP images.

Figure 4: The time-domain signal under 10 working conditions.
Determine parameters

SDP parameters were determined according to the selection
of three parameters of y, 6, and ¢. Here, we use the Pearson

correlation parameter to verify the correlation, and the formula
is shown in eq.12.

cov(X,Y)
oXaoY

p(X,V) = )

Where, the Pearson correlation coefficient p(X, Y) of two
variables (X, Y) is equal to the product of their covariance
Cov(X, Y) divided by their respective standard deviations (cX,
cY). Through a large number of experiments to prove that 0
is 607, the effect is better. By choosing this angle, the formed
SDP images can be divided equally, the overlap is not obvious,
and the extractable features are more obvious. Therefore, we
transform the data of 10 working conditions into snowflake-like
images by the principle of SDP, and come to extract their features.
The snowflake image is displayed in fig.5.
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Figure 5: The SDP images of 10 working conditions.

Specific implementation

The process of fault diagnosis under multiple conditions is
shown in fig.6.

* 2400 images of snowflakes formed by the SDP principle
were selected for training.

» Selecting the Alexnet model.

* The processed images are fed into the Alexnet and the size
of each convolution kernel is continuously changed based on
the correctness rate and the determined metrics to determine
a more appropriate Alexnet model.

The size of the convolution kernel is determined, and images
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of 10 randomly selected working conditions are input into its
model for testing to verify the stability and accuracy of the

model.
=Gl
Orriginal signal Randomly selected training set Randomly selected test images
! !
Verify its new metrics and the most
sDE Selecting the Alexnet model highest acouracy
! ! 1
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Figure 6: Procedure of bearing fault diagnosis under different
conditions.
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Figure 7: Structure of the Alexnet model.

In picture7, the principle and process of Alexnet operation
are clearly shown. Based on the new metrics and the high
correct rate, to adjust the size of the convolution kernel for each
layer by Alexnet. The experiments mainly changed the size
of convolutional kernels in each layer of the model from 2 x
2 to verify the effects of convolutional kernel size on its fault
diagnosis and to test its acc and running time. The results are
shown in tab.1.

According to the table, the Alexnet model achieves the
highest accuracy and the highest index when the convolution
core size is 15 x 15 and 8 x 8. But the runtime, on the other hand,
seems to be in the low to medium range. To verify that the multi-
layer convolutional kernels are optimized, the highest correct
rate of the first layer (15 x 15) and the highest I | (8 x 8) are
selected to continue to tuning the second layer of convolutional
kernels. Using the method of controlling variables, as shown in
the results of Table 1, we use the ratio of accuracy to time as
a metric to evaluate the impact of changes in the first layer of
convolution kernels.

In order to reflect the improvement of the convolutional neural
network by the adopted indicators, we conduct a comparative
experiment below. The convolution kernel size with the highest
accuracy rate of the first layer and the convolution kernel size
with the highest index were used for subsequent improvement.
The results of the second layer of comparison are shown in Table
2, Table 3 and Table 4.
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The rationale for not beginning the first convolution kernel
size with 1x1 is that the running time and accuracy are too low.
The provided findings have minimal reference value. According
to tab.2, the second layer still has the greatest accurate rate
for a kernel size of 5 x 5 and the biggest [ for a kernel size
of 14 x 14 when the first layer is 8 x 8. As demonstrated in
tab.3 when the first layer is 15 x 15, the second layer has the
greatest accurate rate for a kernel size of 2 x 2 and the maximum
I, for a kernel size of 17 x 17. As seen in tab.4, tab.5, tab.6,
tab.7, second layer utilizes these four convolution kernel sizes
to estimate the size of the third layer convolution kernel. The
convolution and size obtained by the correctness and I, as well
as their combination, change the size of the convolution kernel

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

18 x 18 96.67% 1863 1.21992
19 x 19 96.33% 1864 1.21498
20 x 20 96.67% 1883 1.20696
21 x21 92.33% 1866 1.16328
22 x22 96.83% 1870 1.21736
23 x23 85.83% 1870 1.07907
24 x24 81.33% 1859 1.02854
25 x 25 91% 1879 1.13859
26 x 26 81% 1893 1.00597

Table 3: Running time and correctness for changing the size of the
second layer convolution kernel 2.

of the third layer in the first two layers. The optimal network is Convolution kernel size |  Accuracy Running time Inew
thus discovered. 2%2 99.83% 2794 0.9983
Table 1: Running time and correctness for changing the size of the first 3x3 96.67% 2581 1.04648
layer convolution kernel.
4x4 97.83% 2566 1.06523
Convolution kernel size Accuracy Running time Inew 5%x5 96.83% 2340 1.15617
2x2 81% 2425 0.94828 6%6 97.83% 2388 1.14463
3x3 90.83% 2374 1.08621 7% 7 96.17% 2292 1.17233
4x4 88.33% 2299 1.09077 8§ x 8 97.33% 2308 1.17825
5x5 92.83% 2312 1.13989 9%x9 98.33% 2294 1.19762
6x6 96.5% 2316 1.18291 10 x 10 95.5% 2292 1.16417
7x7 99% 2371 1.18541 11 x11 98% 2301 1.18997
8§ x 8 98% 2332 1.19306 12x 12 96.67% 2290 1.17946
9x9 93.5% 2403 1.10464 13x13 99% 2179 1.26942
10 x 10 98.17% 2383 1.16955 14 x 14 97.33% 2160 1.25898
11 x11 97.83% 2387 1.16355 15 %15 98.5% 1937 1.42080
12 %12 97.67% 2440 1.13641 16 x 16 93% 1944 1.33663
13x13 97.33% 2527 1.09347 17 x 17 98.33% 1927 1.42571
14 x 14 97.5% 2611 1.06014 18 x 18 94.5% 1928 1.36946
15 %15 99.83% 2794 1.01437 19 x 19 95% 1925 1.37886
16 x 16 98.17% 2795 0.99715 20 x 20 91.5% 1864 1.37152
17 %17 95.33% 2806 0.96451 21 x 21 98.17% 1963 1.39728
18 x 18 97% 2839 0.97 22 x 22 84.83% 1943 1.21984
19 x 19 98.67% 2817 0.99440 23 x23 94.17% 1914 1.37467
20 x 20 96% 2806 0.97129 24 x 24 83% 1919 1.20845
21 x 21 99% 2812 0.99950 25 x25 84.33% 2271 1.03751

Table 2: Running time and correctness for changing the size of the
second layer convolution kernel 1.

Convolution kernel size Accuracy Running time Inew
2x2 98% 2332 0.98798
3x3 95.33% 2311 0.96980
4x4 95.33% 2303 0.97317
5%x5 99% 2342 0.99380
6x6 93.67% 2293 0.96039
7x7 96% 2351 0.96
8§x8 91.33% 2323 0.92431
9%x9 92.17% 2292 0.94543

10 x 10 95.33% 1950 1.14934
11 x 11 96.33% 1940 1.16738
12 %12 97.67% 1915 1.19907
13x13 93% 1957 1.11723
14 x 14 97.67% 1877 1.22335
15 x 15 96.33% 1891 1.19763
16 x 16 92.5% 1878 1.15797
17 x 17 96.83% 1869 1.21802

Table 4: Running time and correctness for changing the size of the
second layer convolution kernel 3.

Convolution kernel size Accuracy Running time Inew
2x2 95.33% 2334 1.02110
3x3 97.33% 2337 1.04118
4x4 97.67% 2331 1.04751
5x5 98.33% 2361 1.04119
6x6 97.17% 2500 0.9717
7x7 99% 2263 1.09368
8§x8 98.17% 2129 1.15277
9x9 95.83% 2045 1.17152

10 x 10 99.33% 1951 1.27281
11 x 11 94.33% 1932 1.22063
12 x12 95.33% 1921 1.24063
13x13 97.33% 2020 1.20458
14 x 14 90% 1965 1.14504
15x 15 57.67% 1976 0.72963

Based on the new indicators and the accuracy rate, the size
of the first three layers of convolutional kernels is adjusted.
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Because the Alexnet model comprises five convolutional layers,
in order to diagnose these ten working conditions, the preceding
processes must be repeated to establish the right rate and running

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

Table 9: Running time and correctness for changing the size of the
fourth layer convolution kernel 2.

" ) o Convolution kernel size Accuracy Running time Inew
duration for the ﬁve convolutlgnal layers, as \yell as the regulslte 272 07.83% 1873 Y
structure. Then, in the following layers, continue to modify the

. . . . 3x3 95.5% 1882 1.15747
size of the convolutional kernels, seeking for the convolutional
kernel size with the best accuracy and the largest value of I__ . 4x4 90.5% 1913 1.07909
The following tables contains detailed statistics as well as the 5%5 94.67% 1871 1.15415
appropriate convolutional kernel size. 6%6 88.67% 2281 0.8867
Table 5: Running time and correctness for changing the size of the third 7x7 95.5% 2239 0.97291
layer convolution kernel 2. 8§x8 95.5% 2028 1.07414
Convolution kernel size Accuracy Running time Inew 9x9 92.67% 1877 1.12616
2x2 97.83% 1946 0.98886 10 x 10 98.5% 1877 1.19701
3x3 93.17% 1907 0.96101 Table 10: Running time and correctness for changing the size of the
4x4 93.17% 1871 0.97951 fourth layer convolution kernel 3.
5x5 90.83% 1913 0.93394 Convolution kernel size Accuracy Running time Inew
6x6 97.5% 1967 0.975 2x2 96.33% 1884 0.9633
7x7 95.83% 1908 0.98793 3x3 95.83% 1847 0.97750
0,
88 94.5% 1923 0.96662 Table 11: Running time and correctness for changing the size of the
9x9 96% 1872 1.00872 fourth layer convolution kernel 4.
0,
10 .10 - 94.17% 1894 0'97799_ Convolution kernel size |  Accuracy Running time Inew
Table 6: Runn¥ng time and correctness for changing the size of the third 2 %2 97 5% 2385 117613
layer convolution kernel 3.
3x3 98.3% 2612 1.08273
Convolution kernel size Accuracy Running time Inew
4 x4 98.83% 2651 1.07255
2x2 97.83% 2738 1.01582
0,
3%3 98.5% 2550 1.09818 5%x5 95.67% 2874 0.95770
0,
4x4 94.17% 2843 0.9417 6x6 6% 2877 0-96
55 99% 2694 104475 7x7 98.5% 2439 1.16189
6x6 96.67% 2775 0.99039 8§x8 95.83% 2509 1.09885
7x7 99.17% 2378 1.18562 9x9 95.17% 2416 1.13329
88 7% 2396 115096 10 % 10 98.67% 2494 113823
9%x9 98.33% 2394 1.16772
11 x 11 97.17% 2453 1.13966
10 x 10 92.83% 2382 1.10796
111 93.17% 2348 112812 Table 12: Running time and correctness for changing the size of the
fourth layer convolution kernel 5.
12x 12 96.83% 2356 1.16845
13%13 81% 2361 0.97536 Convolution kernel size Accuracy Running time Inew
14 % 14 42% 2351 0.50789 2%2 81.33% 1947 087763
0,
Table 7: Running time and correctness for changing the size of the third 3%3 6% 1993 1-otron
layer convolution kernel 4. 4 x4 97.67% 1999 1.02654
Convolution kernel size | Accuracy Running time Inew 5x%5 93.83% 2001 0.98519
2x2 98.17% 2059 1.01364 6x6 97.67% 2093 0.98043
33 97.17% 1938 106596 77 91.33% 1990 0.96484
4 x4 96.83% 1978 1.04075 g§x8 98.5% 2101 0.985
5x5 96% 1968 1.03707 — : :
66 93.83% 2015 0.98999 Table 13: Running time and correctness for changing the size of the
2o i fourth layer convolution kernel 6.
7x7 97.17% 2061 1.00235
3xs 95.5% 2126 0.955 Convolution kernel size Accuracy Running time Inew
— : : 2x2 81.33% 1935 0.84440
Table 8: Running tnpe and correctness for changing the size of the 33 99% 2000 0.99
fourth layer convolution kernel 1.
4x4 96.33% 1967 0.98387
Convolution kernel size Accuracy Running time Inew
2%2 96.83% 1915 0.97538 % 9433% 1930 098191
3x3 97.17% 1895 0.98913 6x6 96.5% 1911 1.01449
4x4 88.83% 1905 0.89949 As seen in tables, the size of the preceding layer’s
5x5 98.17% 1886 1.00408 convolutional kernels leads successive convolutions to be
6%6 95.33% 1929 0.9533 non-identical. The topology of neural networks and the settings
7%7 98.5% 1911 0.99427 of each layer cannot be guaranteed to be optimum without a lot
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of theoretical backing. Establishing the ideal set of parameters
for this model requires a significant number of experimental data
supports, based on the highest accuracy rate and I__ .

Table 14: Running time and correctness for changing the size of the
fifth layer convolution kernel 1.

forth layer fifth layer Accuracy | Running time Inew
5x5 2x2 97.17% 1900 0.99625
5x5 3x3 97.67% 1948 0.9767
5x5 4x4 98.83% 1899 1.01380
7x7 2x2 98.33% 1908 0.9833

Table 15: Running time and correctness for changing the size of the
fifth layer convolution kernel 2.

forth layer fifth layer Accuracy | Running time Inew
9x9 2x2 98.67% 1873 0.98828

9x9 3x3 99% 1876 0.99
10 x 10 2x2 93.83% 1875 0.9383
7x7 2x2 98.33% 1908 0.9833

Table 16: Running time and correctness for changing the size of the
fifth layer convolution kernel 3.

forth layer fifth layer | Accuracy | Running time Inew
2x2 2x2 95.17% 1894 0.9517
2x2 3x3 93.83% 1874 0.94831
3x3 2x2 94.5% 1877 0.945
Table 17: Running time and correctness for changing the size of the
fifth layer convolution kernel 4.
forth layer fifth layer Accuracy | Running time Inew
2x2 2x2 98.17% 2352 0.99547
2x2 3x3 97.5% 2375 0.97911
2x2 4 x4 97.33% 2377 0.97658
2x2 5x5 97% 2385 0.97
2x2 6%x6 85% 2374 0.85394
2x2 7x7 10% 2350 0.10149
2x2 8§x8 10% 2347 0.10162
4 x4 2x2 99.17% 2353 1.00350
4 x4 3x3 96.5% 2381 0.965
4 x4 4 x4 10% 2366 0.10063

Table 18: Running time and correctness for changing the size of the
fifth layer convolution kernel 5.

forth layer fifth layer Accuracy | Running time Inew
4 x4 2x2 97.17% 1960 1.00739
4x4 3x3 93.83% 2032 0.9383
4 x4 4x4 98.5% 1964 1.01910
4x4 5x5 95.67% 1992 0.97591
4 x4 6x6 96.67% 1991 0.98661
8§x8 2x2 96.83% 2024 0.9683

Table 19: Running time and correctness for changing the size of the
fifth layer convolution kernel 6.

forth layer fifth layer Accuracy | Running time Inew
3x3 2x2 98.67% 1978 1.00189
3x3 3x3 97.17% 1904 1.00947
3x3 4x4 95.67% 1921 0.98509
3x3 5x5 98.33% 1978 0.9833
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The comparison experiment is like a bifurcation structure,
based on the correct rate of changing the size of each layer of
convolution kernel and the highest value of the new index, and
then adjusting the size of the convolution kernel of the next layer
in turn to obtain the required accuracy rate and the highest value
of the new indicator, compare, optimize, and finally obtain the
optimal result of each layer, so as to establish the structure of this
convolutional neural network. The table above shows the results
after each change and also shows the optimization process.

Comparison and analysis

To create a feature picture, the image is twisted. The initial
convolutional layer will extract some superficial data features.
When more layers are added, more features are extracted, and
the features become more complicated. Each layer of the Alexnet
model can display the features of the SDP image, and the features
contained in the image will be the key to our classification of its
faults. At the same time, the images become increasingly blurred.
The following five figures show the image characteristic maps of
the relative convolutional layers in Alexnet (see Figures 8).

Through the above work, the layers with the highest metrics
(15x15,17x 17,2 x 2,4 x 4,4 x 4) and the layers with the highest
correctness (15 x 15,2 x 2,7 x 7,4 x 4, and 2 x 2) were selected.
After training and determining the size of the convolution kernel
of the model, we test the stability of Alexnet by randomly selecting
images of ten working conditions for testing, and the results of the
test are shown in the confusion matrix in fig 9, fig 10, and the
accuracy can be derived as 97.5% and 98.5%. Through the above
table, we get two sets of convolution kernel sizes, and compare
them through the validation set to see if it has been effectively
improved. The test set results are shown in the confusion matrix
in the following figure. Obviously, the accuracy of the neural
network structure according to the new indicator is higher than
that of the other group. So, we get the optimal structure.

The size of the convolution kernel is determined by the
highest accuracy rate, as shown in the confusion matrix. It is
difficult to distinguish the three working conditions of inner ring
fault 2, inner ring fault 3, and outer ring fault 3 when testing

these ten working conditions.

Figure 8: The characteristic map after the convolution layer.
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optimize the structure of neural networks. The work of this paper
is still mainly to provide new directions and perspectives for
fault diagnosis in practical applications and to prepare for future
research and experiments. The research will lay a foundation for
practical industrial application and later for rotating machinery
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Figure 10: Test results ranged by highest metrics.

According to the data, the highest to obtain the size of the
convolution kernel, the accuracy of these ten working conditions,
and the degree of distinction between working conditions.
Figurell depicts a comparison with other methods. In order to
verify the effectiveness of this method and its robustness under
different working conditions, it is compared with other methods.
Compared with the traditional support vector machine method
and the deep convolutional neural network DCNN, the results
show that the proposed method is still highly improved.

Method

Atcuracy
Figure 11: Five methods and diagnosis accuracy.

Conclusion

In this paper, a new Alexnet-based method for bearing fault
diagnosis is proposed. The main contributions of this paper
include: 1) proposing an efficient and clear method for converting
raw vibration signals into faulty images, eliminating reliance
on the experience and knowledge of signal processing experts;
2) A metric of the ratio of accuracy rate to time is proposed to
determine the framework of the network to improve efficiency
and scalability; 3) The application of this framework to fault
diagnosis improves the practicality of the method. It converts
vibration signals into SDP figures in polar coordinate system.

These SDP images are then fed into a modified Alexnet to
extract features. A key evaluation index considering accuracy and
running time, respectively, and the correctness rate is compared to
determine the corresponding parameters of the CNN model and
solve problems in engineering applications. The computational
results show that the key metrics have a significant impact on
the parameters of the model. The method proposed in this paper
solves the ability to diagnose faults under different working
conditions, and provides an idea and perspective on how to
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and multi-fault combined diagnosis.
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