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ABSTRACT

The flexibility and potential of Single-layer Feedforward Neural Networks (SENN) (typical shallow neural networks) in
providing good models in both regression and classification problems has already been widely proven through applications
in different areas of knowledge. Additionally, the incorporation of complex phenomenological models into network training
(Physics-Informed Neural Networks, PINN) has been able to efficiently combine the identification of a black box model and
its consistency with the physics of the analyzed process. On the other hand, between the extremes of incorporating or not
a description of the phenomenon into the neural model, there is a vast number of applications (perhaps the majority) in
which a classical mathematical model derived from conservation laws is not available. However, even in these cases in which a
mathematical representation of the physics of the phenomenon is not available, or even not feasible, some properties of the final
black-box model must be consistent with basic features/ behaviors observed in the real problem.

Consistency of Neural Models with Respect to
Elementary Physical Features. Is this Always
Guaranteed?

operational data.

Table 1 presents 3 case studies which comprise real
data sets used as benchmark in several works involving

Physics-Informed Neural Networks (PINN) and Physics-
Guided Neural Networks (PGNN) incorporate equations derived
from conservation laws (partial/ ordinary differential and
algebraic equations) into the training of shallow and deep neural
networks'. PINN have been applied in different areas, in addition
to providing a strategy for solving partial differential equations®*®.
All these applications are based on the availability of a
phenomenological model capable of describing, with a
certain level of complexity, the physics of the phenomenon
from which the training data was extracted. On the other
hand, there are many situations in which there is no
theoretical model capable of mathematically describing
the problem analyzed and the knowledge acquired is
basically restricted to the available experimental and/ or

steady-state regression [UCI Machine Learning Repository]’.
The first one [Computer Hardware]'® proposes a model to
evaluate the performance of Central Processing Units (CPU)
considering one output (CPU relative performance) and 6 inputs
(cache memory size, u,; minimum number of I/O channels, u.;
maximum number of I/O channels, u; machine cycle time, u;
minimum main memory, ¥ ; and maximum main memory, u,.
The other two case studies are related to predicting the toxicity
of chemicals for different species of fish!"'2. In both cases, the
output is the concentration of product in water that results in the
death of 50 percent of the aquatic test specimens within 96 hours.
Eight and six different molecular descriptors are considered as
inputs in the first (QSAR Aquatic Toxicity) and second (QSAR
Fish Toxicity) case studies, respectively (x, /=1, ...8, zj,j =1,
..,0)
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Table 1: Data sets.
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Data set Sample size Number of features | Output Output type Reference

Computer Hardware 209 6 CPU relative performance Integer 10

QSAR Aquatic Toxicity | 546 8 Acute aquatic toxicity Continuous 1

QSAR Fish Toxicity 908 6 Acute aquatic toxicity Continuous 12

The three data sets (Table 1) were used as case studies N _ _ . _

. . . . 6
in a recent work'? which proposes an innovative approach B i i i
(Weight Initialization based on Linearization combined with a X7 N N
Constructive Algorithm for Regression problems, WILCAR) for g - -
1n1t1a1.1z1ng Welghts and defining the number of hidden units in a1 4. QSAR fish toxicity.
a typical Single-layer Feedforward Neural Networks (SFNN) : WILCAR XM ELM & cod
aimed at developing regression models. Two classic weight nput xpecte
initialization and training methods were also used to evaluate z, + + + -
the performance of the proposed approach, namely: Random z, + + + +
Initialization by Xavier Method [RIXM]"; and Extreme - j _ _ _
Learning Machine [ELM]'>!¢, While both WILCAR and RIXM 4 n n n n
involve a gradient-based training approach (backpropagation), %
the ELM method is associated with the class of gradient-free z + + - +
learning algorithms. The methods were applied to the three data z, + + + +

sets (Table 1) without incorporating any physical information.
No theoretical model was available, at any level of complexity,
capable of describing the physics of each phenomenon.
Validation results based on consolidated metrics (Root Mean
Square Error, RMSE; and coefficient of determination, R?)
showed good performance of the neural models obtained with all
learning methods, especially with the new proposed WILCAR
approach”.

Although there is no mathematical description of the
phenomenon, even in situations of this type it is possible to
have, for example, prior knowledge of the direction of the
effect of a given input on the output (beyond other qualitative
characteristics of the phenomenon behavior), which corresponds
to the static gain signal. Therefore, it is appropriate to check
whether the neural model predict static gain signals in a way
consistent with what is expected for the entire set (or a subset)
of input-output pairs.

Table 2 to Table 4 present the obtained and expected gain
signals for each case study. The expected signals are based
on information collected from experts in each phenomenon,
in accordance with the references related to each one of the
experiments'®'2,

Table 2: Computer hardware.

Input WILCAR RIXM |ELM | Expected
u, + + + -
u, + + + +
u, + + - +
u, + + + +
U - - + +
u, + + + +
Table 3: QSAR aquatic toxicity.
Input WILCAR RIXM ELM Expected
X, + - +
X, - - - +
X - + + +
x, + + +
X, + + +

Table 2 to Table 4 show that static gain signal prediction
errors are verified in all 3 case studies involving all weight
initialization and training methods (WILCAR; RIXM; and
ELM). It is reasonable to consider that the direction of the
effect of a given input on a given output in a regression
model (dynamic or static) constitutes an elementary but
important feature which must be evaluated verified and
satisfied, even when there is no phenomenological model
capable of describing the physics of the problem (if there
is sufficient information available, other phenomenon
characteristic behavior must also be verified and
satisfied). The results presented in Tables 2-4 show that
properly validated neural models obtained with different
initialization and training strategies do not necessarily
guarantee the achievement of static gains consistent
with expectations, nor other possible relevant qualitative
behaviors.
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