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 A B S T R A C T 

The flexibility and potential of Single-layer Feedforward Neural Networks (SFNN) (typical shallow neural networks) in 
providing good models in both regression and classification problems has already been widely proven through applications 
in different areas of knowledge. Additionally, the incorporation of complex phenomenological models into network training 
(Physics-Informed Neural Networks, PINN) has been able to efficiently combine the identification of a black box model and 
its consistency with the physics of the analyzed process. On the other hand, between the extremes of incorporating or not 
a description of the phenomenon into the neural model, there is a vast number of applications (perhaps the majority) in 
which a classical mathematical model derived from conservation laws is not available. However, even in these cases in which a 
mathematical representation of the physics of the phenomenon is not available, or even not feasible, some properties of the final 
black-box model must be consistent with basic features/ behaviors observed in the real problem.
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Consistency of Neural Models with Respect to 
Elementary Physical Features. Is this Always 
Guaranteed?

Physics-Informed Neural Networks (PINN) and Physics-
Guided Neural Networks (PGNN) incorporate equations derived 
from conservation laws (partial/ ordinary differential and 
algebraic equations) into the training of shallow and deep neural 
networks1. PINN have been applied in different areas, in addition 
to providing a strategy for solving partial differential equations2-8. 
All these applications are based on the availability of a 
phenomenological model capable of describing, with a 
certain level of complexity, the physics of the phenomenon 
from which the training data was extracted. On the other 
hand, there are many situations in which there is no 
theoretical model capable of mathematically describing 
the problem analyzed and the knowledge acquired is 
basically restricted to the available experimental and/ or 

operational data.

Table 1 presents 3 case studies which comprise real 
data sets used as benchmark in several works involving 
steady-state regression [UCI Machine Learning Repository]9. 
The first one [Computer Hardware]10 proposes a model to 
evaluate the performance of Central Processing Units (CPU) 
considering one output (CPU relative performance) and 6 inputs 
(cache memory size, u1; minimum number of I/O channels, u2; 
maximum number of I/O channels, u3; machine cycle time, u4; 
minimum main memory, u5; and maximum main memory, u6. 
The other two case studies are related to predicting the toxicity 
of chemicals for different species of fish11,12. In both cases, the 
output is the concentration of product in water that results in the 
death of 50 percent of the aquatic test specimens within 96 hours. 
Eight and six different molecular descriptors are considered as 
inputs in the first (QSAR Aquatic Toxicity) and second (QSAR 
Fish Toxicity) case studies, respectively (x1 I = 1, …8, zj,j = 1, 
…,6)
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x6 - - - -

x7 - - - +

X8 - - + +

Table 4: QSAR fish toxicity.
Input WILCAR RIXM ELM Expected
z1 + + + -
z2 + + + +
z3 - - - -
z4 + + + +
z5 + + - +
z6 + + + +

Table 2 to Table 4 show that static gain signal prediction 
errors are verified in all 3 case studies involving all weight 
initialization and training methods (WILCAR; RIXM; and 
ELM). It is reasonable to consider that the direction of the 
effect of a given input on a given output in a regression 
model (dynamic or static) constitutes an elementary but 
important feature which must be evaluated verified and 
satisfied, even when there is no phenomenological model 
capable of describing the physics of the problem (if there 
is sufficient information available, other phenomenon 
characteristic behavior must also be verified and 
satisfied). The results presented in Tables 2-4 show that 
properly validated neural models obtained with different 
initialization and training strategies do not necessarily 
guarantee the achievement of static gains consistent 
with expectations, nor other possible relevant qualitative 
behaviors.
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Table 1: Data sets.
Data set Sample size Number of features Output Output type Reference
Computer Hardware 209 6 CPU relative performance Integer 10

QSAR Aquatic Toxicity 546 8 Acute aquatic toxicity Continuous 11

QSAR Fish Toxicity 908 6 Acute aquatic toxicity Continuous 12

The three data sets (Table 1) were used as case studies 
in a recent work13 which proposes an innovative approach 
(Weight Initialization based on Linearization combined with a 
Constructive Algorithm for Regression problems, WILCAR) for 
initializing weights and defining the number of hidden units in 
a typical Single-layer Feedforward Neural Networks (SFNN) 
aimed at developing regression models. Two classic weight 
initialization and training methods were also used to evaluate 
the performance of the proposed approach, namely: Random 
Initialization by Xavier Method [RIXM]14; and Extreme 
Learning Machine [ELM]15,16. While both WILCAR and RIXM 
involve a gradient-based training approach (backpropagation), 
the ELM method is associated with the class of gradient-free 
learning algorithms. The methods were applied to the three data 
sets (Table 1) without incorporating any physical information. 
No theoretical model was available, at any level of complexity, 
capable of describing the physics of each phenomenon. 
Validation results based on consolidated metrics (Root Mean 
Square Error, RMSE; and coefficient of determination, R2) 
showed good performance of the neural models obtained with all 
learning methods, especially with the new proposed WILCAR 
approach13.

Although there is no mathematical description of the 
phenomenon, even in situations of this type it is possible to 
have, for example, prior knowledge of the direction of the 
effect of a given input on the output (beyond other qualitative 
characteristics of the phenomenon behavior), which corresponds 
to the static gain signal. Therefore, it is appropriate to check 
whether the neural model predict static gain signals in a way 
consistent with what is expected for the entire set (or a subset) 
of input-output pairs.

Table 2 to Table 4 present the obtained and expected gain 
signals for each case study. The expected signals are based 
on information collected from experts in each phenomenon, 
in accordance with the references related to each one of the 
experiments10-12.

Table 2: Computer hardware.
Input WILCAR RIXM ELM Expected
u1 + + + -
u2 + + + +
u3 + + - +
u4 + + + +
u5 - - + +
u6 + + + +

Table 3: QSAR aquatic toxicity.
Input WILCAR RIXM ELM Expected

x1 + - + +

x2 - - - +

x3 - + + +

x4 + + + +

x5 + + + +
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