
Oracle Apex Dynamic Actions: Powering Interactivity with Low-Code or No-Code

Ashraf Syed*

Citation: Syed A. Oracle Apex Dynamic Actions: Powering Interactivity with Low-Code or No-Code. J Artif Intell Mach Learn &
Data Sci 2025 3(3), 2808-2818. DOI: doi.org/10.51219/JAIMLD/ashraf-syed/588

Received: 20 July, 2025; Accepted: 30 July, 2025; Published: 01 August, 2025

*Corresponding author: Ashraf Syed, USA, E-mail: maverick.ashraf@gmail.com

Copyright: © 2025 Syed A., This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

1

Research ArticleVol: 3 & Iss: 3

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/ashraf-syed/588

 A B S T R A C T
The contemporary landscape of enterprise application development is increasingly driven by the imperative for rapid

delivery and enhanced user engagement. Low-code platforms, such as Oracle Application Express (APEX), have emerged
as pivotal tools in addressing these demands, empowering both professional developers and citizen developers to construct
robust business solutions with unprecedented efficiency1. Traditionally, integrating dynamic and interactive features into web
applications has necessitated extensive client-side scripting (e.g., JavaScript) and complex Asynchronous JavaScript and XML
(AJAX) implementations, often posing significant development hurdles and increasing time-to-market. This paper investigates
Oracle APEX Dynamic Actions as a transformative declarative framework designed to streamline the creation of sophisticated
interactivity with minimal or no coding. By abstracting the complexities of event-driven programming, Dynamic Actions
enable developers to define responsive UI behaviors, real-time validations and seamless server-side interactions. This capability
significantly accelerates the development cycle, reduces potential errors, democratizes application creation by empowering a
broader range of users and ultimately enhances the overall user experience. Our analysis posits that Dynamic Actions are a
cornerstone of APEX's ability to deliver high-fidelity, interactive applications efficiently, solidifying APEX's position as a leading
low-code platform for modern enterprise needs.

Keywords: Oracle APEX, Dynamic Actions, Low-Code Development, No-Code Development, Web Interactivity, Enterprise
Applications, Citizen Development

1. Introduction
The digital transformation sweeping across industries has

placed unprecedented pressure on organizations to develop
and deploy business applications with speed, agility and
efficiency2. In this demanding environment, traditional software
development methodologies, often characterized by lengthy
development cycles and high resource requirements, are
proving increasingly inadequate. This challenge has fueled the
proliferation of low-code and no-code development platforms,
which aim to democratize application creation by abstracting
away much of the underlying technical complexity3,4. These
platforms empower a broader spectrum of users, from

professional developers seeking accelerated delivery to business
users with domain expertise (often termed “citizen developers”),
to contribute directly to software solutions, thereby bridging the
gap between business needs and IT capabilities6.

Oracle Application Express (APEX) stands as a prominent
example within the low-code landscape. As a feature of the Oracle
Database, APEX provides a web-based, declarative development
environment for building scalable, secure enterprise applications
with minimal coding7,8. Its architecture leverages the robust
capabilities of the Oracle Database, allowing developers to create
data-driven applications that are tightly integrated with their
existing data assets. APEX has gained significant traction due

https://doi.org/10.51219/JAIMLD/ashraf-syed/588
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/rajalakshmi-thiruthuraipondi-natarajan/446
https://doi.org/10.51219/JAIMLD/ashraf-syed/588

J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3Syed A.,

2

to its ability to rapidly deliver web applications, ranging from
simple data entry forms to complex dashboards and sophisticated
business systems, all while maintaining high performance and
security standards1. The core philosophy of APEX revolves
around declarative development, where developers configure
components and define behaviors through intuitive wizards and
property editors, rather than writing extensive lines of code9.

One of the persistent challenges in modern web application
development is the creation of rich, interactive user interfaces.
Users today expect dynamic feedback, real-time updates and
seamless navigation without constant page reloads. Traditionally,
achieving such interactivity involved a deep understanding
of client-side scripting languages like JavaScript, coupled
with frameworks such as jQuery and intricate Asynchronous
JavaScript and XML (AJAX) implementations to communicate
with the server without full page submissions8. This process is
inherently complex, error-prone and requires specialized coding
skills, which can significantly slow down development and
increase maintenance overhead5. For developers focused on
rapid application delivery or for citizen developers with limited
programming backgrounds, this complexity becomes a major
barrier to realizing sophisticated user experiences. The manual
coding of event listeners, DOM manipulation and AJAX calls
is time-consuming and often requires extensive debugging,
detracting from the primary goal of delivering business value
efficiently6.

Oracle APEX directly addresses this challenge through
its innovative feature known as Dynamic Actions. Dynamic
Actions provide a powerful, declarative framework that allows
developers to define client-side and server-side interactions in
response to specific events, without the need to write custom
JavaScript or intricate AJAX callbacks7. At its core, a Dynamic
Action is a rule-based mechanism that specifies: when an
event occurs (e.g., a button click, a change in an item’s value
or a page load), what conditions must be met for the action to
fire and what actions should be performed (e.g., show/hide an
element, set a value, execute SQL, submit the page)9,10. This
abstraction fundamentally simplifies the process of adding
interactivity, transforming what would traditionally be a
coding-intensive task into a configuration exercise. Dynamic
Actions empower developers to create highly responsive and
engaging applications, providing immediate feedback to users
and streamlining workflows with unprecedented ease. They
represent a cornerstone of APEX’s no-code/low-code promise,
enabling the creation of complex interactive behaviors through
intuitive point-and-click interfaces for many common scenarios,
while still offering avenues for custom code (low-code) when
highly specific requirements arise1,5.

This paper aims to provide a comprehensive analysis of
Oracle APEX Dynamic Actions, exploring their architectural
underpinnings, key components and diverse practical
applications. We will delve into how Dynamic Actions
contribute significantly to the low-code/no-code paradigm,
demonstrating their impact on accelerated development cycles,
reduced costs, enhanced user experience and the empowerment
of citizen developers. Furthermore, we will discuss best
practices for leveraging Dynamic Actions effectively, along
with considerations for performance, maintainability and
security. By examining their capabilities and benefits, this
research will solidify the understanding of Dynamic Actions as

an indispensable tool for building modern, interactive enterprise
web applications rapidly and efficiently within the Oracle APEX
ecosystem.

2. Oracle Apex Architecture and Core Principles
Oracle APEX operates as a declarative low-code platform,

fundamentally shifting the paradigm of application development
from imperative coding to configuration-driven design. This
approach allows developers to define what an application
should do, rather than explicitly detailing how it should achieve
it9,11. The platform’s declarative nature is evident in its rich set
of pre-built components, such as forms, reports, charts and
calendars, which can be assembled and customized through
intuitive wizards and property editors. This significantly
reduces the need for manual coding, thereby accelerating the
development cycle, minimizing errors and enabling faster
time-to-market for enterprise solutions3,12. The agility fostered
by this low-code environment allows organizations to respond
quickly to evolving business requirements and embrace digital
transformation initiatives more readily4. Furthermore, the visual
and configuration-centric development environment empowers
“citizen developers”-business users with deep domain knowledge
but limited traditional programming skills-to actively participate
in application creation, bridging the historical gap between
business needs and IT delivery capabilities6.

At the heart of any web application lies the interplay between
client-side and server-side processing. Client-side processing
occurs within the user’s web browser, executing code typically
written in JavaScript, HTML and CSS to handle user interface
interactions, display data and manage the visual presentation13.
Server-side processing, on the other hand, involves the
application server and the database, where business logic is
executed, data is retrieved and manipulated and responses are
prepared. In the context of APEX, the Oracle Database serves as
the robust back-end, where application metadata, data and PL/
SQL code reside. Asynchronous JavaScript and XML (AJAX)
plays a crucial role in modern web interactivity, enabling partial
page updates without requiring a full page reload8. This means
that client-side actions can trigger server-side processes, fetch
new data or execute logic and only specific parts of the page
are refreshed, leading to a smoother and more responsive user
experience. APEX extensively utilizes AJAX behind the scenes
to facilitate this seamless communication between the browser
and the database.

Web applications are inherently event-driven, meaning their
behavior is largely determined by events triggered by user actions
or system states. Event-driven programming is a paradigm where
the flow of the program is determined by events, such as mouse
clicks, keyboard inputs, form submissions or even the loading of
a page14. These events serve as triggers for specific functions or
routines. For instance, a user clicking a button, changing a value
in a text field or hovering over an element all constitute events.
The ability to capture and respond to these events is fundamental
to creating dynamic and interactive user interfaces that provide
immediate feedback and adapt to user input. Before the advent of
sophisticated declarative tools like Dynamic Actions, developers
had to manually write JavaScript event listeners and functions
to capture these events and implement the desired interactive
behaviors.

3

Syed A., J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3

Historically, APEX developers achieved interactivity through
a combination of manual JavaScript, page processes and explicit
AJAX callbacks. While effective, these methods often involved
writing boilerplate code, managing DOM elements directly
and explicitly handling the complexities of asynchronous
communication. For example, to hide a region when a checkbox
was unselected, one might write a JavaScript function called by
the checkbox’s onChange attribute, which would then manipulate
the region’s style property. More complex interactions, such as
refreshing a report based on a select list change, would typically
involve defining an AJAX callback process on the server and
then writing client-side JavaScript to invoke this callback and
update the relevant page elements upon receiving a response.
This imperative approach, while offering fine-grained control,
could be time-consuming, prone to errors and difficult for
non-specialists to manage or debug. Dynamic Actions were
introduced to abstract away much of this complexity, offering a
declarative, no-code/low-code alternative for defining common
interactive patterns1,7.

3. Dissecting Dynamic Actions
To rigorously assess the effectiveness of various performance

optimization techniques in APEX, a comprehensive experimental
methodology centered around a sample application is designed
that mirrors real-world enterprise scenarios. This section
outlines the experimental setup, the selection and application
of optimization techniques, the performance metrics chosen
for evaluation and the detailed procedures for conducting
benchmarks, including code snippets, test iterations and
validation steps. By grounding the approach in empirical testing,
this paper aims to provide quantifiable insights into how these
techniques impact APEX application performance.

Oracle APEX Dynamic Actions represent a declarative
framework that empowers developers to define client-side
and server-side interactivity with significantly reduced coding
effort. Their primary purpose is to enable sophisticated, event-
driven behaviors on a web page through configuration rather
than imperative scripting, thereby making advanced UI/UX
features accessible to a broader range of developers, including
citizen developers1,9. This framework abstracts the complexities
of JavaScript, HTML Document Object Model (DOM)
manipulation and AJAX communication into a set of intuitive
properties and actions.

•	 A Dynamic Action is fundamentally composed of several
key elements:

•	 When: This section defines the event that triggers the
Dynamic Action.

°	 Event: This specifies the type of user interaction or system
occurrence that initiates the action. Common events include
Click (on a button or element), Change (when an item’s
value is altered and focus leaves the item), Page Load (when
the page finishes loading), After Refresh (when a region or
item is refreshed via AJAX) and Custom Event (allowing
developers to define their own events that can be triggered
programmatically).

°	 Selection Type: This determines the scope or target of
the event. Options include Item (a specific page item like
a text field or select list), Button, Region, jQuery Selector
(for targeting any HTML element using standard jQuery

syntax) and JavaScript Expression (for more dynamic
targeting). For instance, selecting Item and choosing
P1_MY_CHECKBOX for a Change event means the
Dynamic Action will fire whenever the value of P1_MY_
CHECKBOX changes.

°	 Selector: Based on the selection type, this identifies the
specific page element(s) to which the event listener is
attached. For an Item selection type, this would be the item’s
name (e.g., P1_ITEM_NAME). For a jQuery Selector, it
could be a CSS class or ID (e.g., .my-class or #myRegionId).

°	 Condition: An optional component that further refines when
the action executes. Even if the event fires, the action will
only proceed if this condition evaluates to true. Conditions
can be simple, like “Item is NULL,” “Item is NOT NULL,”
“Equal to,” or more complex, involving “JavaScript
Expression” or “SQL Expression” for advanced logic. For
example, a “Show” action for a region might only fire if a
checkbox is checked and a text item’s value is ‘ADMIN’.

•	 True Actions: These are the operations performed when
the Dynamic Action’s “When” condition is met (or if no
condition is specified). APEX provides a comprehensive
list of built-in actions that cover a wide range of common
interactive needs:

°	 Set Value: Dynamically sets the value of a page item or
HTML element, often based on a static value, JavaScript
expression or SQL query.

°	 Show/Hide: Controls the visibility of page regions, items
or other elements.

°	 Enable/Disable: Manages the active state of input fields
and buttons.

°	 Execute JavaScript Code: Allows for custom client-side
logic to be executed, providing a “low-code” escape hatch
for scenarios not covered by declarative actions.

°	 Submit Page: Initiates a full page submission, similar to
clicking a standard submit button.

°	 Refresh: Reloads the content of a region (e.g., an Interactive
Report or Classic Report) without a full page refresh,
typically via AJAX.

°	 Alert/Confirm: Displays JavaScript alert or confirmation
dialogs to the user.

°	 Set Focus: Directs the user’s cursor to a specific page item.
°	 Add class/Remove class: Dynamically adds or removes

CSS classes from HTML elements, allowing for visual
styling changes.

°° Each True Action comes with specific parameters to
configure its behavior, such as the value to set, the elements
to affect or the JavaScript code to execute.

•	 False actions: These actions are executed if the Dynamic
Action’s event fires, but its “Condition” evaluates to false.
This provides a clean way to define inverse behaviors (e.g.,
if a checkbox is checked, show an item; if unchecked,
hide it). Using False Actions simplifies logic by keeping
related true/false scenarios within a single Dynamic Action
definition.

•	 Affected elements: For most actions, developers must
specify which elements on the page will be impacted. This
can be done by selecting page items, regions or by providing

J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3Syed A.,

4

a jQuery selector to target specific HTML elements based
on their ID, class or other attributes. This granular control
ensures that actions modify precisely the intended parts of
the user interface.

•	 Execution scope: Dynamic Actions offer two execution
options: “Once” and “Every Time.” “Once” means the
action will fire only the first time its triggering event and
condition are met after the page loads. “Every Time” means
the action will fire each time the event occurs and the
condition is true. The “Every Time” option is crucial for
dynamic interactions where behavior needs to be repeatedly
applied upon subsequent user input.

•	 Server-side logic integration: A powerful aspect of
Dynamic Actions is their seamless integration with server-
side processing, predominantly through AJAX. Actions
like Execute Server-side Code (PL/SQL) allow developers
to run database logic, perform calculations or fetch data
without a full page postback. When Execute Server-
side Code is selected, APEX automatically generates the
necessary AJAX callback infrastructure. The results of
this server-side execution can then be returned to the client
and used by subsequent client-side actions within the same
Dynamic Action chain (e.g., Set Value based on the AJAX
return). The Submit Page action also triggers server-side
processing, but unlike AJAX, it initiates a full-page refresh,
typically used for saving data or navigating to another page.

The beauty of Dynamic Actions lies in their spectrum
of “no-code” to “low-code” capabilities. Many common
interactive scenarios, such as showing or hiding a region based
on a checkbox’s state, enabling a button when a text field is
populated or populating a second select list based on the first
(cascading LOV), can be achieved with absolutely no custom
code. Developers simply configure the “When,” “True Actions,”
and “Affected Elements” properties through the APEX UI.
However, for more specialized requirements, Dynamic Actions
provide “low-code” flexibility. For instance, an Execute
JavaScript Code action allows developers to write small snippets
of client-side JavaScript or an Execute Server-side Code action
enables short PL/SQL blocks for custom database logic. This
hybrid approach ensures that while complex coding is largely
eliminated for standard patterns, the extensibility needed for
unique business requirements remains fully accessible, striking
an optimal balance between rapid development and powerful
customization1,7,10.

4. Practical Applications and Use Cases
Oracle APEX Dynamic Actions are instrumental in building

highly interactive and user-friendly web applications by
simplifying complex client-side and server-side interactions
into declarative configurations. Their versatility allows them to
address a wide array of common and sophisticated use cases in
enterprise application development:

Form validation and dynamic feedback: Dynamic Actions
revolutionize user input validation by providing immediate,
real-time feedback, significantly improving the user experience
and data quality15.

°	 Real-time validation: As a user types into a username
field, a Dynamic Action can trigger on the Change event
of the item. This can initiate an Execute Server-side Code

action to check the uniqueness of the username against the
database. Based on the server’s response, a Show or Hide
action can display an inline message indicating “Username
available” or “Username already taken.”

°	 Showing/Hiding validation messages: Upon losing focus
from an input field (Blur event), a Dynamic Action can
assess if the entered value meets specific criteria (e.g.,
email format, minimum length). If the validation fails, a
Show action reveals a predefined validation error message
associated with that field, guiding the user to correct their
input without requiring a full-page submission.

°	 Conditional display of fields: In a survey or registration
form, certain fields may only be relevant based on previous
selections. For example, if a user selects “Other” from
a dropdown list for “Country,” a Dynamic Action can be
configured on the Change event of the country item. If the
value is ‘Other’, a Show action makes a “Please Specify”
text field visible; otherwise, a Hide action keeps it concealed.

•	 Dynamic UI adjustments: Enhancing user experience
by adaptively modifying the interface based on user
interactions.

°	 Showing/Hiding regions, items or buttons: Beyond simple
field visibility, Dynamic Actions can control entire sections
of a page. For instance, a Dynamic Action on a Change
event of a checkbox labeled “Advanced Options” can show
or hide an entire region containing complex configuration
settings. Similarly, buttons can be shown or hidden based on
the logged-in user’s role or other application states.

°	 Enabling/Disabling fields or buttons: To enforce business
logic, Dynamic Actions can enable or disable input fields
or buttons. For example, a “Submit” button might remain
disabled (Disable action) until all mandatory form fields are
populated, detected by Change events on each input field,
combined with a Condition that checks if all values are
NOT NULL.

°	 Cascading LOVs (List of Values): A classic use case
involves populating a second select list based on the
selection in the first. When a user selects a “Country” from
a dropdown, a Dynamic Action on the Change event of the
“Country” item can execute a server-side PL/SQL process.
This process fetches “States” relevant to the selected
country from the database. The returned data is then used by
a Refresh action to update the “State” select list, providing a
seamless and intuitive data entry experience16.

•	 Interactive reporting: Dynamic Actions significantly
enhance the interactivity of APEX reports, turning static
data displays into dynamic analytical tools.

°	 Refreshing reports based on filter changes: Instead of
a full page reload, when a user changes a filter item (e.g.,
P1_STATUS or P1_DATE_RANGE), a Dynamic Action
triggered on the Change event of the filter item can execute
a Refresh action targeting the Interactive Report or Classic
Report region. This updates the report results instantly via
AJAX, providing immediate insights without interrupting
the user’s flow.

°	 Highlighting rows based on data conditions: While
APEX Interactive Reports offer built-in highlighting,

5

Syed A., J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3

more complex visual cues can be achieved with Dynamic
Actions. A Page Load Dynamic Action, combined with
Execute JavaScript Code, can iterate through report rows
and apply custom CSS classes to rows or cells based on
specific data values (e.g., highlighting overdue tasks in red).

°	 Integrating interactive charts: Charts can be dynamically
updated in response to user selections on other page
items. Similar to refreshing reports, a Change event on a
selection filter can trigger a Refresh action on a chart region,
recalculating and redrawing the chart based on the new
parameters.

•	 User experience enhancements: Beyond core functionality,
Dynamic Actions enable subtle yet powerful improvements
to application usability.

°	 Displaying confirmation dialogs: Before a destructive
action, such as deleting a record, a Dynamic Action on a
button’s Click event can display a Confirm dialog. Only
if the user confirms will the subsequent actions (e.g.,
Submit Page with a delete process) be executed, preventing
accidental data loss.

°	 Using notifications (apex.message.showPageSuccess):
After a successful operation (e.g., data submission),
a Dynamic Action can display unobtrusive success
messages. An After Submit Dynamic Action, for instance,
can use Execute JavaScript Code to call apex.message.
showPageSuccess(‘Record saved successfully!’;, providing
immediate and clear feedback without navigating away
from the current context.

°	 Providing immediate feedback for user actions: Simple
visual cues like showing a loading spinner (apex.util.
showSpinner) while an AJAX process is running and then
hiding it upon completion, can significantly enhance the
perceived responsiveness of an application. This can be
implemented by adding Show and Hide actions around the
Execute Server-side Code or Refresh actions.

•	 Integration with external APIs (Low-Code Perspective):
Dynamic Actions can serve as a bridge for integrating with
external services, extending APEX applications beyond
their native database capabilities17.

°	 Triggering AJAX calls to external REST services: While
direct client-side calls to external APIs might face CORS
restrictions, Dynamic Actions with Execute Server-side
Code can act as a proxy. The PL/SQL code can use APEX_
WEB_SERVICE to call external REST APIs, process the
response on the server and then return relevant data to the
client-side Dynamic Action for display or further processing.
This allows low-code developers to leverage external data
sources without deep knowledge of web service integration
patterns.

°	 Processing responses and updating page elements:
Once data is fetched from an external API via a server-
side Dynamic Action, the client-side True Action can use
Set Value or Execute JavaScript Code to parse the returned
JSON or XML and update specific page items or regions.
This enables real-time display of external information, such
as weather forecasts based on a selected city or stock prices.

•	 Complex workflows simplified: By chaining multiple
actions and conditions, Dynamic Actions allow for the

creation of intricate, multi-step application logic in a
declarative manner.

°	 Chaining dynamic actions: A single event can trigger a
sequence of actions. For example, changing a product
category (Event: Change on P1_CATEGORY) might first
clear the product sub-category list (Set Value to NULL),
then refresh the sub-category LOV (Refresh action on
P1_SUB_CATEGORY) and finally, refresh the product
list report (Refresh action on Product_Report_Region),
all within one coherent Dynamic Action definition. This
sequential execution streamlines complex user flows that
would otherwise require extensive imperative coding and
intricate callback management.

5. Benefits of Dynamic Actions
Oracle APEX Dynamic Actions confer substantial benefits

that are central to the platform’s efficacy as a leading no-code/
low-code development environment. These advantages
collectively contribute to faster, more efficient and more
accessible application development.

•	 Accelerated Development Cycle: Dynamic Actions
dramatically reduce the time required to build interactive
features, a critical factor in today’s fast-paced business
environment18.

°	 Significant time reduction: Implementing common
interactive elements like showing/hiding fields, conditional
enabling of buttons or cascading select lists, which previously
demanded manual JavaScript coding and meticulous DOM
manipulation, can now be achieved in minutes through a
few clicks and configurations in the APEX Builder. This
declarative approach bypasses the need for writing, testing
and debugging hundreds of lines of code, leading to a
profound acceleration in the development timeline.

°	 Comparison with traditional coding methods: In
traditional web development using frameworks like vanilla
JavaScript, jQuery or even modern frameworks such as React
or Angular, achieving dynamic behaviors involves explicit
coding of event listeners, functions to modify the Document
Object Model (DOM) and potentially AJAX calls with their
associated success and error handling. For instance, creating
a cascading List of Values (LOV) in a traditional environment
would necessitate: writing JavaScript to detect a change in
the parent LOV, constructing an AJAX request to the server,
handling the server’s JSON/XML response, parsing the data
and then dynamically populating the child LOV’s options
while also managing potential loading indicators and error
states8. In contrast, APEX Dynamic Actions simplify this to
a “Change” event, a “Refresh” action on the child item and
perhaps an “Execute Server-side Code” for data retrieval,
all configured declaratively. This contrast highlights the
immense reduction in boilerplate code and cognitive load,
making development significantly faster.

•	 Empowerment of citizen developers: Dynamic Actions
democratize application creation by enabling business
analysts and non-traditional developers to build powerful,
interactive applications without extensive programming
knowledge6,19.

°	 Democratization of application development: The
intuitive, wizard-driven interface of Dynamic Actions

J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3Syed A.,

6

allows individuals with strong domain expertise but limited
coding skills to contribute directly to the development of
sophisticated applications. They can define complex UI
logic and data interactions using a point-and-click interface,
translating business requirements directly into functional
application features. This bridges the traditional gap
between business users who understand the “what” and IT
developers who handle the “how.”

°	 Reduced reliance on specialized skills: By abstracting
away the complexities of client-side scripting and AJAX,
Dynamic Actions diminish the dependency on highly
specialized JavaScript developers for common interactive
requirements. This frees up senior developers to focus
on more complex architectural challenges or custom
integrations, while citizen developers can build and
maintain a significant portion of the application’s interactive
elements.

•	 Reduced development costs and maintenance: Less
code inherently translates to fewer bugs and a more
straightforward maintenance process, leading to overall
cost savings.

°	 Fewer bugs and easier maintenance: Declarative
configurations are less prone to typographical errors
or logical flaws compared to hand-coded scripts. The
standardized nature of Dynamic Actions makes it easier to
understand, troubleshoot and maintain application behavior,
even by developers who did not originally create them.
When an issue arises, debugging often involves reviewing
declarative settings rather than tracing complex JavaScript
call stacks.

°	 Standardization of interactions: Dynamic Actions enforce
a consistent pattern for implementing interactive features
across an application. This uniformity reduces design and
development effort, ensures a predictable user experience
and simplifies future enhancements or modifications.
Instead of diverse custom scripts, developers work within a
defined, well-understood framework.

•	 Improved application performance (Client-Side Focus):
Dynamic Actions contribute to a smoother user experience
by optimizing client-side processing and minimizing full
page reloads.

°	 Minimizing full page reloads: A primary benefit of
Dynamic Actions is their extensive use of AJAX to perform
partial page updates. Instead of submitting the entire page to
the server and redrawing it, Dynamic Actions enable targeted
refreshes of specific regions or items. This reduces network
traffic, server load and improves the perceived speed and
responsiveness of the application, as users experience fewer
disruptive page flashes8.

°	 Optimizing AJAX Calls: APEX’s internal mechanisms for
Dynamic Actions are optimized to handle AJAX requests
efficiently. They streamline the communication between the
browser and the database, ensuring that only necessary data
is exchanged. While custom JavaScript could theoretically
achieve similar optimizations, Dynamic Actions provide a
robust and tested framework that handles many performance
considerations automatically.

•	 Consistency and reusability: Dynamic Actions promote

a standardized approach to UI behavior, which enhances
application quality and accelerates development.

°	 Promoting consistent UI behavior: By providing a
predefined set of actions and events, Dynamic Actions
encourage developers to implement interactive patterns in a
uniform way. This leads to a more consistent and predictable
user interface across different pages and applications, which
is crucial for usability and learnability.

°	 Ability to copy/Paste dynamic actions: In APEX, Dynamic
Actions can often be easily copied and pasted between
items, regions or even different pages within the same
application or exported and imported between applications.
This reusability significantly accelerates development, as
common interactive patterns (e.g., show/hide a field based
on a checkbox) do not need to be re-created from scratch for
each instance.

•	 Enhanced user experience: The responsiveness and
intuitiveness fostered by Dynamic Actions lead to a superior
overall user experience.

°	 More responsive and intuitive applications: Users expect
web applications to react instantly to their input. Dynamic
Actions enable this by providing immediate feedback and
updating the UI in real-time, making applications feel
more desktop-like and less like traditional web forms.
This responsiveness reduces user frustration and increases
satisfaction.

°	 Immediate feedback to user actions: Whether it’s a visual
change (showing/hiding), a value update or a confirmation
message, Dynamic Actions provide instant cues to the
user about the outcome of their actions. This immediate
feedback loop is crucial for guiding users through complex
forms and workflows, minimizing errors and enhancing
overall usability.

6. Best Practices and Considerations for Dynamic
Actions
To maximize the effectiveness and maintainability of Oracle
APEX Dynamic Actions, developers should adhere to established
best practices and consider potential implications:

•	 Performance optimization:

°	 Minimizing the number of DAs on a single page: While
Dynamic Actions are efficient, an excessive number of
complex DAs on a single page can still impact page load
times and client-side rendering performance. Each Dynamic
Action adds event listeners and processing overhead. It’s
crucial to consolidate related logic where possible and avoid
unnecessary DAs, especially those firing on frequent events
like Key Press20.

°	 Efficient use of selectors: The performance of a Dynamic
Action is heavily influenced by the efficiency of its jQuery
Selector or other element identification methods. Using
specific ID selectors (e.g., #myRegionId) is highly efficient.
In contrast, broad class selectors (e.g., .my-class) or attribute
selectors, especially without a precise context, can force the
browser to traverse a larger portion of the DOM, leading to
slower execution times21. Always strive for the most specific
and unique selector available.

°	 Avoiding redundant actions: Review Dynamic Actions to

7

Syed A., J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3

ensure that multiple actions or DAs are not attempting to
perform the same operation or are triggering unnecessarily.
For example, if two Dynamic Actions conditionally hide
the same item under different circumstances, consider
combining them into a single DA with more complex
Condition logic and True and False actions.

°	 When to use Stop execution on error: This option, available
for individual actions within a Dynamic Action, determines
whether subsequent actions in the same True or False chain
will execute if an error occurs in the current action. Setting
this to ‘Yes’ can be invaluable during debugging, as it
allows you to pinpoint precisely where an issue is occurring
and prevents cascading errors or unintended behaviors
from subsequent actions. For production, carefully assess
whether a failure in one action should halt the entire chain
or if other actions can still proceed.

•	 Maintainability and readability:

°	 Meaningful naming conventions for DAs: Consistent
and descriptive naming is paramount for maintainability,
especially in larger applications or team environments.
Dynamic Action names should clearly indicate their purpose,
the item/region they affect and the event that triggers them
(e.g., DA_P1_STATUS_CHANGE_SHOW_DETAILS,
DA_SAVE_BUTTON_CLICK_SUBMIT_PAGE). This
clarity significantly reduces the time required for future
debugging, enhancements or knowledge transfer22.

°	 Adding comments to complex DAs or JavaScript code:
For Dynamic Actions that involve complex conditions,
intricate JavaScript code (Execute JavaScript Code action)
or sophisticated PL/SQL (Execute Server-side Code
action), adding inline comments within the code or utilizing
the “Comments” field in the APEX Builder is highly
recommended. These comments should explain the logic,
purpose and any non-obvious dependencies, making the
DA’s behavior understandable without extensive analysis.

°	 Organizing DAs logically: Grouping Dynamic Actions
within the APEX Builder’s tree view (e.g., by the page
item they affect or by general page functionality) improves
navigation and comprehension. While APEX automatically
groups by Event and Selection Type, further logical
grouping through careful naming or judicious use of shared
events can be beneficial.

•	 Security implications:

°	 Client-side validation vs. server-side validation: Dynamic
Actions are excellent for providing immediate client-side
validation feedback to users15. However, it is crucial to
remember that client-side validation can be bypassed by
malicious users. Therefore, all critical data integrity and
security checks must be duplicated and enforced on the
server-side (e.g., via database constraints, APEX validations
or PL/SQL processes)23. Client-side validation is for
convenience and user experience; server-side validation is
for security and data consistency.

°	 Preventing XSS vulnerabilities when using Set Value
or Execute JavaScript Code: When using Dynamic
Actions to Set Value into HTML elements or to Execute
JavaScript Code based on user-provided input, there’s a risk
of Cross-Site Scripting (XSS) vulnerabilities if the input is

not properly sanitized. Always escape any user-generated
content that is displayed or executed as code. APEX
provides utilities like APEX_ESCAPE.HTML in PL/SQL
and apex.util.applyTemplate or apex.util.escapeHTML in
JavaScript to help prevent such attacks.

•	 Debugging dynamic actions:

°	 Utilizing browser developer tools (console, network tab):
The browser’s built-in developer tools are indispensable for
debugging Dynamic Actions. The Console tab will display
any JavaScript errors or custom debug messages (console.
log). The Network tab allows inspection of AJAX calls
initiated by Dynamic Actions, showing request parameters,
response data and timing information, which is critical
for troubleshooting server-side Execute Server-side Code
actions. The Elements tab can be used to inspect the DOM
and see how Dynamic Actions are manipulating elements,
classes and styles.

°	 APEX debug mode: Enabling APEX debug mode (by
appending ?p=APP_ID:PAGE_ID:SESSION:DEBUG:YES
to the URL or using the Developer Toolbar) provides
detailed server-side debug information. This includes
traces of Dynamic Action execution, timings for PL/SQL
processes and bind variable values, offering insights into
the server-side component of DAs24.

•	 When to Use PL/SQL vs. JavaScript in DAs:

°	 Guidelines for choosing the appropriate action type: As
a general rule, use Execute JavaScript Code for client-side
UI manipulations (e.g., showing/hiding elements, simple
calculations, manipulating client-side arrays, integrating
with third-party client-side libraries). Use Execute Server-
side Code (PL/SQL) for interactions involving database
operations (DML, complex queries), sensitive business
logic or when data needs to be retrieved or processed
securely on the server.

°	 Balancing client-side responsiveness with server-side
data integrity: While JavaScript actions offer immediate
responsiveness, any operation that impacts data integrity
or involves sensitive business rules must have a server-
side component. For instance, a client-side validation for
an email format is good for UX, but the actual uniqueness
check and saving of the email should happen via a server-
side process, possibly triggered by a Dynamic Action.

•	 Limitations and workarounds:

°	 Discuss scenarios where DAs might not be sufficient and
require custom JavaScript or PL/SQL: While powerful,
Dynamic Actions cannot cover every conceivable interactive
scenario. For highly custom client-side animations,
complex drag-and-drop interfaces that are not part of built-
in components, deep integration with highly specialized
third-party JavaScript libraries or real-time data streaming
technologies (WebSockets), developers may still need to
write custom JavaScript. Similarly, extremely complex,
multi-step server-side processes that require extensive error
handling or transaction management are better handled in
dedicated PL/SQL packages callable by a Dynamic Action’s
Execute Server-side Code action, rather than in an inline
PL/SQL block.

J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3Syed A.,

8

7. Case Studies and Comparative Analysis
•	 Analyzing practical case studies or conducting comparative

analyses can powerfully illustrate the impact and efficiency
of Oracle APEX Dynamic Actions. These examples
demonstrate how real-world challenges are addressed and
highlight the advantages over traditional development
approaches.

•	 Case study 1: Streamlining a purchase order approval
workflow

°	 Scenario: In a simple business application for managing
purchase orders, an approval workflow is implemented.
When a user (approver) views a purchase order, they
select an “Approval Status” (e.g., “Approved,” “Rejected,”
“Pending Revision”) from a dropdown list.

°	 Dynamic action implementation:

•	 Event: Change on the “Approval Status” item (P1_
APPROVAL_STATUS).

•	 Conditions/True Actions:

•	 If P1_APPROVAL_STATUS is “Rejected”:

°° Show P1_REJECTION_REASON (text area).
°° Enable P1_REJECTION_REASON.

•	 If P1_APPROVAL_STATUS is “Approved”:

°° Hide P1_REJECTION_REASON.
°° Disable P1_REJECTION_REASON.
°° Set Value of P1_REJECTION_REASON to NULL.

•	 Execute Server-side Code (PL/SQL) to update the approval
timestamp in the database and send an automated email
notification to the requester.

•	 Benefit: This single Dynamic Action declaratively manages
multiple UI elements and triggers server-side logic based
on a user’s selection. It significantly improves user
experience by presenting relevant fields only when needed
and automating backend processes instantly. The developer
avoids writing manual JavaScript for element visibility and
AJAX calls for database updates and email notifications.

•	 Case study 2: Creating an interactive sales performance
dashboard

°	 Scenario: A sales manager needs a dashboard to visualize
sales performance. The dashboard includes multiple charts
(e.g., Sales by Region, Sales by Product Category) and an
Interactive Report displaying detailed sales transactions.
The manager needs to filter all components simultaneously
by “Sales Year” and “Sales Quarter” without full page
reloads.

°	 Dynamic action implementation:

•	 Event: Change on P1_SALES_YEAR and P1_
SALES_QUARTER (two separate Dynamic Actions or
one DA on both items with an OR condition).

•	 True actions:

°° Refresh action targeting the “Sales by Region Chart” region.
°° Refresh action targeting the “Sales by Product Category

Chart” region.

°° Refresh action targeting the “Detailed Sales Report”
Interactive Report region.

Benefit: The declarative setup allows for seamless, real-time
filtering of multiple data visualizations and reports. Each chart and
report automatically re-execute its underlying SQL query, which
references the P1_SALES_YEAR and P1_SALES_QUARTER
items and refreshes only its content via AJAX. This provides
an immediate, highly responsive analytical experience. Without
Dynamic Actions, this would typically involve writing custom
JavaScript to capture filter changes, initiate multiple AJAX
requests and then manually parse and render data into each chart
and report element, which is a far more complex and error-prone
undertaking.

•	 Case study 3: Generating text with AI

°	 Scenario: Generate Text with AI action generates text
dynamically based on a predefined input, using substitution
strings or a combination of both. The action then returns
the generated text in a designated page item, such as P1_
RESPONSE, providing an easy and seamless way to present
the AI-generated content within the application. This
functionality allows the application to generate flexible and
dynamic text tailored to the specific needs of the application
and user interaction25.

°	 Dynamic action implementation:

•	 Event: Change on P1_PROMPT.

•	 True Actions:

°° Generate Text with AI action targeting to update the AI
response in another field P1_RESPONSE.

°° Service: Application default.

°° Input Value Type: Item

°° Item: Select P1_PROMPT

°° Use Response Type: Item

°° Item: Select P1_RESPONSE

•	 Benefit: The declarative setup allows for seamless, real-time
filtering of multiple data visualizations and reports. Each
chart and report automatically re-executes its underlying
SQL query, which references the P1_SALES_YEAR and
P1_SALES_QUARTER items and refreshes only its content
via AJAX. This provides an immediate, highly responsive
analytical experience. Without Dynamic Actions, this would
typically involve writing custom JavaScript to capture filter
changes, initiate multiple AJAX requests and then manually
parse and render data into each chart and report element,
which is a far more complex and error-prone undertaking.

•	 Comparison: Implementing cascading list of values (LOV)

°	 Problem: Populate a “City” dropdown based on the
selection in a “State” dropdown.

°	 Oracle APEX Dynamic Action Approach:

•	 Configuration:

•	 Create a page item P1_STATE (Select List).

•	 Create a page item P1_CITY (Select List) with its LOV query
referencing P1_STATE (e.g., SELECT city_name d, city_id
r FROM cities WHERE state_id = :P1_STATE).

9

Syed A., J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3

•	 Create a Dynamic Action:

•	 When: Event: Change, Selection Type: Item, Item: P1_
STATE.

•	 True Action: Action: Refresh, Affected Elements: Item(s),
Item: P1_CITY.

•	 Code Reduction: Minimal to no explicit code. The
declarative setup within the APEX Builder handles event
listening, AJAX requests, server-side data fetching and
client-side rendering.

°	 Traditional Web Development (e.g., Vanilla JavaScript/
jQuery with a simple backend):26

•	 HTML Structure:

•	 <select id=”stateSelect”>

•	 <!-- options populated on page load -->

•	 </select>

•	 <select id=”citySelect”></select>

•	 JavaScript (jQuery example):

$(document).ready(function() {

 // Initial load of states (assuming already present or fetched)
 // $(‘#stateSelect’).append(‘<option value=”...”>...</

option>’);
 $(‘#stateSelect’).on(‘change’, function() {
 var selectedStateId = $(this).val();
 if (selectedStateId) {
 $.ajax({
 url: ‘/api/getCitiesByState’, // Backend endpoint
 method: ‘GET’,
 data: { stateId: selectedStateId },
 success: function(response) {
 var citySelect = $(‘#citySelect’);
 citySelect.empty(); // Clear existing options
 citySelect.append(‘<option value=””>-- Select City --</

option>’);
 $.each(response.cities, function(index, city) {
 citySelect.append($(‘<option></option>’)
 .attr(‘value’, city.id)
 .text(city.name));
 });
 },
 error: function(xhr, status, error) {
 console.error(‘Error fetching cities:’, error);
 // Display user-friendly error message
 }
 });
 } else {
 $(‘#citySelect’).empty().append(‘<option value=””>--

Select City --</option>’);
 }
 });

});
Backend (e.g., Node.js/Python or PHP, connecting to a

database):
Python Flask example (conceptual)
from flask import Flask, request, jsonify
app = Flask(__name__)

@app.route(‘/api/getCitiesByState’)
def get_cities_by_state():
 state_id = request.args.get(‘stateId’)
 # Database query to fetch cities based on state_id
 cities_from_db = [
 {‘id’: 101, ‘name’: ‘City A’},
 {‘id’: 102, ‘name’: ‘City B’}
] # Example data
 return jsonify({‘cities’: cities_from_db})

•	 Conclusion of comparison: The traditional approach
requires explicit HTML, a significant amount of JavaScript
for event handling, AJAX calls and DOM manipulation, plus
server-side code to handle the API endpoint and database
interaction. The APEX Dynamic Action achieves the same
functionality with almost zero custom code, abstracting
away the complexities of the underlying web technologies.
This directly demonstrates the profound code reduction and
accelerated development capabilities offered by APEX’s
low-code framework.

8. Future Trends and Evolution
The landscape of low-code development platforms and

Oracle APEX within it, is continuously evolving, driven by
advancements in web technologies and the increasing demand
for rapid application delivery. Dynamic Actions are poised to
play a crucial role in leveraging these future trends.

•	 Integration with emerging technologies:

°	 Artificial Intelligence (AI) and Machine Learning (ML):
Dynamic Actions can facilitate the integration of AI/ML
capabilities into APEX applications by acting as declarative
triggers for server-side processes that interact with AI/ML
models. For instance, a Dynamic Action could be configured
to fire on a Change event of a text area, sending its content
to an external AI sentiment analysis API (via APEX_WEB_
SERVICE within an Execute Server-side Code action)27.
The returned sentiment score could then be displayed
instantly on the page using a Set Value action. Similarly,
a Dynamic Action could trigger an ML model hosted on
Oracle Cloud Infrastructure (OCI) to make predictions
based on user input, with the results dynamically updating
charts or reports on the APEX page28.

°	 Blockchain: While direct client-side interaction with
blockchain is complex, Dynamic Actions can serve as
the UI trigger for server-side PL/SQL procedures that
interact with blockchain networks. An Execute Server-
side Code action could, for example, initiate a transaction
on a blockchain ledger (e.g., recording an immutable audit
trail) or retrieve data from a smart contract, with the results
being displayed back to the user through client-side actions.

J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3Syed A.,

10

This allows APEX applications to leverage the security
and transparency of blockchain without requiring deep
cryptographic knowledge from the developer.

°	 Internet of things (IoT): Dynamic Actions can enhance
IoT applications built on APEX by enabling real-time
visualization and control. An APEX application could
consume data from IoT devices, stored in the Oracle
Database and Dynamic Actions could refresh charts or
gauges on a dashboard at regular intervals (e.g., using a Set
Interval JavaScript action to periodically trigger a Refresh
action) to display live sensor readings or device status29.
Furthermore, user actions (e.g., clicking a button) could
trigger a Dynamic Action that sends commands to IoT
devices via server-side APIs, enabling remote control from
the APEX interface.

•	 Enhancements in Future APEX Versions:

°	 More declarative actions and richer component
integration: Oracle consistently enhances APEX with new
features. Future versions may introduce even more built-in
declarative actions, reducing the need for Execute JavaScript
Code or Execute Server-side Code for increasingly complex
scenarios. This could include more advanced client-side
charting manipulations, richer drag-and-drop capabilities
or direct integration with web components (e.g., custom
HTML elements) that expose their own events, which
Dynamic Actions can seamlessly consume30.

°	 Improved performance and optimization: Continued
focus on client-side rendering performance and AJAX
optimization will likely see further refinements in how
Dynamic Actions process and manage events, potentially
leading to even faster and smoother user experiences,
especially on resource-constrained devices.

°	 Advanced debugging and monitoring tools: As
applications grow in complexity, debugging interactive
elements becomes crucial. Future APEX releases might offer
more sophisticated built-in debugging tools specifically
for Dynamic Actions, providing clearer insights into their
execution flow, data changes and potential bottlenecks,
further simplifying the troubleshooting process24.

•	 The role of dynamic actions in the evolving low-code
landscape:

°° Dynamic Actions will continue to be a cornerstone of
APEX’s value proposition in the burgeoning low-code
landscape. As businesses demand faster innovation and
greater agility, the ability to rapidly build interactive,
data-driven applications with minimal coding will remain
paramount. Dynamic Actions enable citizen developers to
take on more complex tasks, freeing professional developers
to focus on specialized integrations and advanced solutions19.
Their declarative nature ensures that applications remain
maintainable and scalable, adapting to evolving business
needs. The framework’s flexibility, allowing for “low-code”
escape hatches when “no-code” isn’t enough, ensures its
continued relevance for a wide spectrum of development
requirements, solidifying APEX’s position as a powerful
tool for modern enterprise application development.

9. Conclusion
Oracle APEX Dynamic Actions stand as a pivotal innovation

within the low-code development paradigm, fundamentally
transforming how interactive web applications are built. This
paper has explored their architectural components, practical
applications and profound impact on the development lifecycle.

•	 Recap: We have demonstrated that Dynamic Actions
abstract the intricate complexities of client-side JavaScript
and asynchronous AJAX communication into a declarative,
wizard-driven framework. This allows developers to define
sophisticated event-driven behaviors-from real-time form
validation and dynamic UI adjustments to interactive
reporting and external API integrations-with unprecedented
ease and efficiency. The core mechanism of When, True
Actions, False Actions and Affected Elements provides
a powerful yet intuitive means to control application
interactivity.

•	 Reiterate importance: Dynamic Actions are not merely
a convenient feature; they are a cornerstone of Oracle
APEX’s ability to deliver on its no-code/low-code promise.
By empowering developers to create rich user experiences
without extensive imperative coding, they significantly
reduce development time and effort, minimize potential
errors and accelerate time-to-market for critical business
applications. This capability is crucial in today’s rapidly
evolving digital landscape, where agility and responsiveness
are key drivers of organizational success18.

•	 Key Takeaways: The primary benefits derived from
leveraging Dynamic Actions include:

°	 Accelerated Development: Substantially reducing
coding effort and development cycles.

°	 Developer Empowerment: Enabling citizen developers
to build interactive features, thus democratizing
application creation and fostering greater collaboration
between business and IT6.

°	 Cost Efficiency: Lowering development and
maintenance costs due to reduced code complexity and
standardized implementation patterns.

°	 Enhanced User Experience: Delivering highly
responsive and intuitive applications that provide
immediate feedback and adapt dynamically to user
input, leading to increased user satisfaction and
productivity.

°	 Maintainability and Consistency: Promoting
standardized approaches to UI behavior, resulting in
more robust and easily manageable applications.

•	 Future outlook: As the low-code ecosystem continues to
mature and integrate with emerging technologies like AI/
ML and IoT, Dynamic Actions are well-positioned to evolve
further, offering even more declarative capabilities and
tighter integrations. Their adaptable nature, providing both
no-code simplicity and low-code extensibility, ensures their
continued relevance as an indispensable tool for crafting
modern, high-fidelity enterprise web applications within
the Oracle APEX framework. The future of application
development is undeniably low-code and Dynamic Actions
are a testament to how intelligent platform design can

11

Syed A., J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3

empower a broader community to build the applications of
tomorrow19.

10. Acknowledgment
The author thanks the Oracle APEX community for their

extensive documentation, forums and insightful blogs, which
provided foundational insights for this research. The author
would also like to disclose the use of the Grammarly (AI) tool
solely for editing and grammar enhancements.

11. References

1.	 Robal T, Reinsalu U, Jürimägi L, et al. Introducing rapid web
application development with Oracle APEX to students of higher
education. New Trends in Computer Sciences, 2024;2: 69-80.

2.	 Parimi SKK. Impact of Low-Code/No-Code Platforms. Institute
of Electrical and Electronics Engineers (IEEE), 2025.

3.	 B John. Low-Code and No-Code Platforms: Accelerating
Enterprise Software Development,” unknown.

4.	 Z Yan. The Impacts of Low/No-Code Development on Digital
Transformation and Software Development. arXiv.org.

5.	 Käss S, Strahringer S, Westner M. Practitioners’ perceptions on
the adoption of low code development platforms. IEEE Access,
2023;11: 29009-29034.

6.	 Beranic, Tina, Patrik Rek, Marjan Heričko. Adoption and
Usability of Low-Code/No-Code Development Tools. Varazdin:
Faculty of Organization and Informatics Varazdin.

7.	 Kvet M. Rapid Application Development and data management
using Oracle APEX and SQL. 2024 IEEE 22nd World Symposium
on Applied Machine Intelligence and Informatics (SAMI), Stará
Lesná, Slovakia, 2024: 000297-000302.

8.	 Schwinger W, Retschitzegger W, Kapsammer E, et al. Getting
Started with Low-Code - A Data-Centric Primer for Oracle
APEX. 42nd International Conference on Organizational
Science Development, University of Maribor, University Press,
2023: 1003-1016.

9.	 da Silva PP. User Interface Declarative Models and Development
Environments: A Survey. Lecture Notes in Computer Science,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001: 207-226.

10.	 C Dietrich. Managing Dynamic Actions. Oracle Help Center.

11.	 Abdul Razak SF, Phey Ernn Y, Yussoff FI, et al. Enhancing
Business Efficiency through Low-Code/No-Code Technology
Adoption: Insights from an Extended UTAUT Model. Journal of
Human, Earth and Future, 2024;5: 85-99.

12.	 Veeramachaneni V. Low-Code and No-Code Development:
Revolutionizing Software Engineering for Citizen Developers
and Enterprises. Neuroquantology, 2022;20: 5612-5617.

13.	 J dale. The Evolution of Web Development: From Static Pages
to Dynamic Experiences. Medium, Feb. 14, 2024.

14.	 Lukkarinen A, Malmi L, Haaranen L. Event-driven Programming
in Programming Education. ACM Transactions on Computing
Education, 21: 1-31.

15.	 C Dietrich. About Dynamic Action Support for Calendar. Oracle
Help Center. 2025.

16.	 C Dietrich. Creating a Cascading List of Values. Oracle Help
Center. 2025.

17.	 S Muench. REST – Dive Into APEX. Dive Into APEX. 2025.

18.	 A Nguyen. Low-code & agile development: A match made in
heaven. Synodus. 2025.

19.	 Simon P. Low-Code/No-Code: Citizen Developers and the
Surprising Future of Business Applications. Racket Publishing,
2022.

20.	 Syed A. Performance Analysis of Oracle APEX Applications
in Multi-Tenant Cloud Environments. International Scientific
Journal of Engineering and Management, 2025;4: 1-9.

21.	 Tapasroger. Performance Optimization Techniques for Modern
Web Applications. Medium, 2025.

22.	 A Zeichick. What Is Low Code? A Guide to Low-Code
Development. Oracle, 2024.

23.	 M Mulvaney. Client Side Validations. 2025.

24.	 P Simic, S Collins. Oracle APEX - Creating a Dynamic Action
Plug-in. Rittman Mead, 2024.

25.	 P Kunzel. What’s new in APEX 24.2: Generate Text With AI’
Dynamic Action. Oracle APEX Blogs, 2025.

26.	 Pastierik I. Deploying Oracle Machine Learning AutoML Models
for Oracle APEX Analytics. 2024 IEEE 17th International
Scientific Conference on Informatics (Informatics), Poprad,
Slovakia, 2024: 499-506.

27.	 Okeke HE, Akinbolajo OD. Integrating AI and automation
into low-code development: Opportunities and challenges.
International Journal of Science and Research Archive, 2023;8:
1094-1109.

28.	 Bagam N. Leveraging Cloud-Based Machine Learning for
Enterprise Solutions. International Journal of Enhanced
Research in Management & Computer Applications, 10: 202.

29.	 Bento AC, Gatti DC, Galdino M. Results About the Use of Oracle
Application Express for IoT Projects. 2022 XII International
Conference on Virtual Campus (JICV), Arequipa, Peru, 2022:
1-5.

30.	 Oracle. Implementing Dynamic Actions. Oracle Help Center.
2025.

https://journals.vilniustech.lt/index.php/NTCS/article/view/21227
https://journals.vilniustech.lt/index.php/NTCS/article/view/21227
https://journals.vilniustech.lt/index.php/NTCS/article/view/21227
https://www.techrxiv.org/users/895534/articles/1271972-impact-of-low-code-no-code-platforms?commit=be4564e212b6415ed2093b2d905ff931ca736602
https://www.techrxiv.org/users/895534/articles/1271972-impact-of-low-code-no-code-platforms?commit=be4564e212b6415ed2093b2d905ff931ca736602
https://www.researchgate.net/publication/389634372_LowCode_and_NoCode_Platforms_Accelerating_Enterprise_Software_Development
https://www.researchgate.net/publication/389634372_LowCode_and_NoCode_Platforms_Accelerating_Enterprise_Software_Development
https://www.researchgate.net/publication/389634372_LowCode_and_NoCode_Platforms_Accelerating_Enterprise_Software_Development
https://www.researchgate.net/publication/389634372_LowCode_and_NoCode_Platforms_Accelerating_Enterprise_Software_Development
https://ui.adsabs.harvard.edu/abs/2023IEEEA..1129009K/abstract
https://ui.adsabs.harvard.edu/abs/2023IEEEA..1129009K/abstract
https://ui.adsabs.harvard.edu/abs/2023IEEEA..1129009K/abstract
http://proxy.library.vcu.edu/login?url=https://www.proquest.com/conference-papers-proceedings/adoption-usability-low-code-no-development-tools/docview/2531366275/se-2
http://proxy.library.vcu.edu/login?url=https://www.proquest.com/conference-papers-proceedings/adoption-usability-low-code-no-development-tools/docview/2531366275/se-2
http://proxy.library.vcu.edu/login?url=https://www.proquest.com/conference-papers-proceedings/adoption-usability-low-code-no-development-tools/docview/2531366275/se-2
https://press.um.si/index.php/ump/catalog/view/768/1087/2964
https://press.um.si/index.php/ump/catalog/view/768/1087/2964
https://press.um.si/index.php/ump/catalog/view/768/1087/2964
https://press.um.si/index.php/ump/catalog/view/768/1087/2964
https://press.um.si/index.php/ump/catalog/view/768/1087/2964
https://link.springer.com/chapter/10.1007/3-540-44675-3_13
https://link.springer.com/chapter/10.1007/3-540-44675-3_13
https://link.springer.com/chapter/10.1007/3-540-44675-3_13
https://docs.oracle.com/en/database/oracle/apex/24.2/htmdb/managing-dynamic-actions.html
https://www.hefjournal.org/index.php/HEF/article/view/266
https://www.hefjournal.org/index.php/HEF/article/view/266
https://www.hefjournal.org/index.php/HEF/article/view/266
https://www.hefjournal.org/index.php/HEF/article/view/266
https://www.neuroquantology.com/open-access/%2522Low-Code+and+No-Code+Development%253A+Revolutionizing+Software++Engineering+for+Citizen+Developers+and+Enterprises%2522_14631/?download=true
https://www.neuroquantology.com/open-access/%2522Low-Code+and+No-Code+Development%253A+Revolutionizing+Software++Engineering+for+Citizen+Developers+and+Enterprises%2522_14631/?download=true
https://www.neuroquantology.com/open-access/%2522Low-Code+and+No-Code+Development%253A+Revolutionizing+Software++Engineering+for+Citizen+Developers+and+Enterprises%2522_14631/?download=true
https://medium.com/@Jeremydalee/the-evolution-of-web-development-from-static-pages-to-dynamic-experiences-ee36ac3c9054
https://medium.com/@Jeremydalee/the-evolution-of-web-development-from-static-pages-to-dynamic-experiences-ee36ac3c9054
https://dl.acm.org/doi/10.1145/3423956
https://dl.acm.org/doi/10.1145/3423956
https://dl.acm.org/doi/10.1145/3423956
https://docs.oracle.com/en/database/oracle/apex/24.2/htmdb/about-dynamic-action-support-for-calendar.html
https://docs.oracle.com/en/database/oracle/apex/24.2/htmdb/about-dynamic-action-support-for-calendar.html
https://docs.oracle.com/en/database/oracle/apex/24.2/htmdb/creating-cascading-list-of-values.html
https://docs.oracle.com/en/database/oracle/apex/24.2/htmdb/creating-cascading-list-of-values.html
https://diveintoapex.com/tag/rest/
https://synodus.com/blog/low-code/low-code-agile/
https://synodus.com/blog/low-code/low-code-agile/
https://www.amazon.in/Low-Code-No-Code-Developers-Surprising-Applications-ebook/dp/B0B9R48W99
https://www.amazon.in/Low-Code-No-Code-Developers-Surprising-Applications-ebook/dp/B0B9R48W99
https://www.amazon.in/Low-Code-No-Code-Developers-Surprising-Applications-ebook/dp/B0B9R48W99
https://www.researchgate.net/publication/391747408_Performance_Analysis_of_Oracle_APEX_Applications_in_Multi-Tenant_Cloud_Environments
https://www.researchgate.net/publication/391747408_Performance_Analysis_of_Oracle_APEX_Applications_in_Multi-Tenant_Cloud_Environments
https://www.researchgate.net/publication/391747408_Performance_Analysis_of_Oracle_APEX_Applications_in_Multi-Tenant_Cloud_Environments
https://medium.com/@tapasroger0/performance-optimization-techniques-for-modern-web-applications-85bce595b943
https://medium.com/@tapasroger0/performance-optimization-techniques-for-modern-web-applications-85bce595b943
https://www.oracle.com/application-development/low-code/
https://www.oracle.com/application-development/low-code/
https://content.dsp.co.uk/apex/client-side-validations
https://www.rittmanmead.com/blog/2024/01/oracle-apex-dynamic-action-plugi-ins/
https://www.rittmanmead.com/blog/2024/01/oracle-apex-dynamic-action-plugi-ins/
https://blogs.oracle.com/apex/post/whats-new-in-apex-242-dynamic-action-generate-text-with-ai
https://blogs.oracle.com/apex/post/whats-new-in-apex-242-dynamic-action-generate-text-with-ai
https://ijsra.net/sites/default/files/IJSRA-2023-0077.pdf
https://ijsra.net/sites/default/files/IJSRA-2023-0077.pdf
https://ijsra.net/sites/default/files/IJSRA-2023-0077.pdf
https://ijsra.net/sites/default/files/IJSRA-2023-0077.pdf
https://www.erpublications.com/uploaded_files/download/naveen-bagam_Jlgvs.pdf
https://www.erpublications.com/uploaded_files/download/naveen-bagam_Jlgvs.pdf
https://www.erpublications.com/uploaded_files/download/naveen-bagam_Jlgvs.pdf

	_Hlk194611976

