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 A B S T R A C T 
Modern vehicles increasingly incorporate connected technologies that rival traditional computing platforms in capability and 

complexity. Among these android Automotive has emerged as a popular infotainment platform, offering a rich ecosystem of apps 
and services. However, heightened connectivity also expands the attack surface, making the vehicle susceptible to malware and 
intrusion attempts targeting critical systems. This paper proposes a machine learning (ML)-based framework to detect intrusions 
and malware within Android Automotive environments. By analyzing system logs, app behaviors, network flows and ECU 
interactions, we illustrate how ML models can adaptively detect anomalies that may indicate malicious activity. Our approach 
emphasizes a multi-layered defense, leveraging data from diverse sources and employing both supervised and anomaly detection 
techniques to identify emerging threats. We offer an in-depth discussion on feature engineering, model selection, on-device 
performance considerations and how to deploy these security mechanisms in a resource-constrained automotive setting. We also 
highlight open challenges—including labeling complexities, false-positive management and the secure delivery of model updates 
via Over-the-Air (OTA) channels. The results and recommendations presented aim to guide automotive OEMs, Tier 1 suppliers 
and cybersecurity practitioners toward implementing robust, machine learning-driven security solutions for next-generation 
vehicles.
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1. Introduction
A. Setting the context of android automotive

Over the last decade, the automotive industry has undergone 
a profound transformation, fueled by the convergence of 
information technology, connectivity solutions and vehicle 
electronics. Once perceived as mechanical machines 
supplemented by embedded control units, modern automobiles 
have become “computers on wheels,” integrating complex 

software stacks and data-driven functionalities1. Nowhere is 
this transformation more evident than in the realm of in-vehicle 
infotainment (IVI), where operating systems such as Android 
Automotive provide a smartphone-like environment within the 
car dashboard.

Android Automotive is distinct from Android Auto. While 
Android Auto is primarily a projection-based system that 
relies on a user’s smartphone android Automotive is embedded 
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natively into the vehicle’s hardware. This embedded approach 
grants deeper and more direct integration with the car’s sensors 
and subsystems, enabling features like climate control, seat 
adjustments, advanced media playback, navigation, voice 
assistants and more2. With this level of integration comes a 
notable expansion in functionality-coupled with significant 
security challenges.

The integration of Android’s vast ecosystem of applications 
and services into a vehicle environment raises questions about 
the attack surface. Users can install a variety of apps, connect 
their vehicle to wireless networks and interact with external 
devices over Bluetooth, Wi-Fi, USB ports and other interfaces. 
As connectivity has expanded, so has the potential for nefarious 
actors to exploit vulnerabilities at the application layer, the 
operating system layer or even within the vehicle’s internal 
networks (e.g., CAN, LIN or Ethernet-based segments)3. While 
traditional automotive cybersecurity measures have focused 
on hardware isolation and signature-based detection of known 
exploits, the increased complexity of Android-based platforms 
suggests the need for more adaptive and intelligent protective 
strategies.

B. Motivation for machine learning in automotive 
cybersecurity

Machine learning (ML) has gained prominence as a 
powerful tool for anomaly detection, intrusion detection and 
malware classification in conventional IT environments4. In the 
smartphone domain, ML is often used to analyze application 
behaviors (such as API usage, permissions, traffic patterns) to 
detect malicious apps. This principle can be extended to Android 
Automotive, albeit with unique constraints and opportunities:

•	 Increased data complexity: Android Automotive systems 
log a wealth of data-system calls, app interactions, ECU 
messages, network telemetry. ML techniques can leverage 
these high-dimensional inputs to discern hidden patterns 
that might be missed by traditional rule-based systems5.

•	 Real-time constraints: Vehicles operate in real-time. A 
cybersecurity breach that compromises driving-critical 
functions (e.g., engine control) requires immediate detection 
and response. ML models-once trained-can quickly classify 
anomalies, offering near real-time protection6.

•	 Evolving threat landscape: Automotive systems face zero-
day exploits, supply chain attacks and rapidly morphing 
malware strains. ML-based solutions excel at identifying 
behaviors indicative of new or unknown threats, surpassing 
static signature-based approaches7.

While the potential for ML-driven detection is immense, 
the automotive setting introduces constraints not typically 

encountered in consumer smartphones: the hardware resources 
for infotainment can be more limited and any security 
mechanism must not degrade the user experience or distract 
from driving tasks8. Additionally, the automotive industry has 
stringent regulatory requirements and long product life cycles, 
implying that solutions must remain effective and maintainable 
over many years.

C. Expanding attack surfaces in the connected car ecosystem

Automotive security encompasses not only the infotainment 
head unit but also any networked modules connected to it. 
Android Automotive’s deeper hooks into vehicle components—
such as climate controls, seat sensors or battery management for 
electric cars-could be leveraged by attackers if vulnerabilities 
are found2. Furthermore, the presence of cellular modems, Wi-Fi 
hotspots, Bluetooth and external USB ports creates multiple 
potential entry points for adversaries:

•	 Remote attacks: Using cellular or Wi-Fi interfaces, 
attackers can attempt to exploit unpatched vulnerabilities in 
the operating system or installed applications3.

•	 Local attacks: Malicious USB devices, compromised 
OBD-II dongles or even unauthorized apps installed 
by unwary users could open the door to system-level 
compromises9.

•	 Over-the-air updates: While OTA updates are a 
cornerstone of modern automotive software maintenance, 
they must be implemented securely. A compromised update 
mechanism could distribute malware or tampered firmware 
to thousands of vehicles simultaneously5.

Given these risks, intrusion detection systems (IDS) and 
malware detection tools are no longer optional. They must be 
integral to the automotive software architecture. ML-based 
detection solutions, when architected properly, have the 
flexibility to analyze multiple data streams (logs, network flows, 
sensor readings) and adapt over time, offering a more robust 
defensive posture compared to static solutions.

D. Machine learning approaches for intrusion and malware 
detection

ML techniques broadly fall into supervised, unsupervised 
and semi-supervised paradigms:

•	 Supervised learning: Models learn from labeled datasets—
where examples of “benign” and “malicious” behaviors are 
clearly annotated—and attempt to generalize to unseen data. 
While powerful, supervised ML requires comprehensive 
labeled data, which can be challenging in the automotive 
realm because real-world malware/intrusion samples may 
be rare or undisclosed4.

•	 Unsupervised/anomaly detection: Models attempt to 
characterize “normal” behavior and flag deviations as 
potential anomalies. This can be effective in complex, 
evolving environments like vehicles, where new types 
of attacks might differ significantly from typical usage 
patterns10.

•	 Semi-supervised learning: Combines elements of both, 
making use of abundant unlabeled data for baseline modeling 
and a smaller set of labeled examples for fine-tuning. This 
approach might be especially relevant to automotive data, 
which is both voluminous and varied8.
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within Android Automotive systems, reflecting the state-of-the-
art knowledge. Specifically, our contributions are:

•	 Holistic threat modeling: Identifying high-risk vectors 
where the Android Automotive environment could be 
compromised, including application-layer attacks, network-
based intrusions and vulnerabilities in over-the-air update 
processes5.

•	 Data-driven detection architecture: Proposing an end-to-
end pipeline that collects system and network logs, extracts 
relevant features and feeds these into ML models tailored 
for automotive contexts4.

•	 Evaluation in a resource-constrained environment: 
Discussing the trade-offs between model complexity, 
detection latency and false-positive rates, with particular 
attention to automotive hardware limitations and user 
experience8.

•	 Recommendations for real-world deployment: 
Addressing version control, secure OTA model updates, 
data privacy and regulatory compliance challenges that 
OEMs might encounter during commercialization1.

We anticipate that this blueprint will inform the design and 
deployment of future security solutions, guiding manufacturers, 
Tier 1 suppliers and researchers toward more adaptive and 
resilient automotive defense strategies.

1.1. Concluding remarks on the introduction

In this extended Introduction, we have articulated the 
motivation behind securing Android Automotive, the challenges 
it poses and the rationale for leveraging machine learning to 
enhance intrusion and malware detection capabilities. We have 
also laid out the structure for the remainder of the paper and 
clarified its intended scope and contributions. With the stakes 
high for consumer safety and privacy-and the automotive 
industry evolving at an unprecedented pace-this topic is both 
timely and critical.

In the following sections, we will delve into the existing 
literature on automotive intrusion detection (Section 2), propose 
a detailed ML-based security architecture (Section 3), walk 
through implementation details and results (Section 4) and 
engage in a discussion of implications and future research 
directions (Section 5). We will then conclude by summarizing 
the major takeaways and setting a roadmap for continued 
innovation (Section 6).

2. Literature Review
This section surveys the existing body of research on 

automotive cybersecurity, with particular emphasis on intrusion 
detection and malware mitigation strategies relevant to Android 
Automotive. It also draws connections to broader Android 
security practices, highlighting how techniques from the 
smartphone domain can be adapted or extended for vehicular 
contexts. Finally, the review underscores the roles of machine 
learning (ML) approaches in identifying and classifying 
threats, offering insights into both established and emerging 
methodologies.

2.1. Historical perspective on automotive cybersecurity

Early vehicular systems were largely isolated and relied 
on proprietary protocols such as the Controller Area Network 
(CAN). Researchers initially focused on physical attacks and 

Common ML algorithms for intrusion/malware detection 
include random forests, support vector machines (SVMs), 
deep neural networks and autoencoders for anomaly detection. 
In automotive contexts, deeper integration with system logs-
potentially at the kernel or ECU communication layers—
could provide more accurate threat detection, but also raises 
complexities of data volume and labeling.

E. Regulatory and industry context

The automotive domain is subject to functional safety 
standards (e.g., ISO 26262) and emerging cybersecurity 
regulations. The ISO/SAE 21434 standard, for instance, outlines 
best practices for automotive cybersecurity engineering, 
mandating threat analysis and risk assessment throughout the 
vehicle’s lifecycle1. Additionally, the United Nations Economic 
Commission for Europe (UNECE) regulations on cyber security 
(UN Regulation No. 155) require manufacturers to demonstrate 
how they manage and mitigate cyber risks.

These regulations indirectly incentivize the development 
of comprehensive intrusion detection and malware prevention 
measures that can operate effectively in vehicles on a global 
scale. An ML-powered detection system for Android Automotive 
would not only address these requirements but also position 
OEMs to proactively adapt to zero-day threats, thus reducing 
long-term liability and potential recall costs.

F. Challenges specific to android automotive security

Although Android’s robust permission model and sandboxing 
provide a starting layer of security, unique challenges persist in 
the automotive adaptation:

•	 System resource constraints: While some high-end IVI 
systems feature powerful hardware, many vehicles still 
operate under resource limitations (e.g., CPU, GPU, memory 
availability). ML algorithms must be optimized to function 
efficiently without degrading core user experiences4.

•	 Extended lifecycle management: Automobiles remain 
on the road for a decade or more. This longevity contrasts 
with consumer electronics, where frequent hardware 
replacements or upgrades are common. Automotive ML 
models thus require ongoing maintenance, updates and 
revalidation2.

•	 High reliability requirements: Malfunctioning security 
software could potentially impact driving-critical functions. 
A false positive that wrongly identifies a legitimate system 
process as malicious could degrade the IVI or, in worst-case 
scenarios, hamper vehicle operation3.

•	 Limited training data for attacks: In automotive 
environments, genuine malicious samples are rare and not 
always publicly disclosed. Data collected from “honeypot 
vehicles” or controlled labs might not reflect the full 
spectrum of real-world attacks10.

Overcoming these challenges necessitates a multidisciplinary 
approach, merging expertise in automotive engineering, 
cybersecurity, software development and data science. The 
remainder of this paper delves into how such an approach can 
be operationalized.

G. Outline and contributions of this paper

The primary objective of this work is to demonstrate a viable 
ML-based framework for intrusion and malware detection 
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diagnostic hacking, as remote access avenues were limited3. 
However, as vehicles began to incorporate telematics units, 
Wi-Fi hotspots, Bluetooth and even cellular connectivity, the 
potential for remote intrusions grew substantially. Seminal 
works demonstrated how attackers could exploit vulnerabilities 
in infotainment systems to pivot to safety-critical electronic 
control units (ECUs), prompting the industry and academia to 
reevaluate automotive security measures3.

In response to these revelations, vehicle manufacturers 
adopted defensive strategies like firewalling between the 
infotainment network and drivetrain ECUs, secure boot 
mechanisms and code-signing. Yet, the rapid rise of software-
defined vehicles-with frequent updates and an app-like 
ecosystem-introduced a fresh wave of concerns that traditional, 
static solutions (e.g., signature-based malware detection) could 
not adequately address1. This gap set the stage for more dynamic, 
adaptive solutions, including the use of machine learning 
algorithms tailored for detecting anomalies and malicious 
behaviors in real time.

2.2. Evolution of intrusion detection systems in vehicles

2.2.1. Conventional IDS approaches: Intrusion Detection 
Systems (IDS) in automotive applications initially borrowed 
from approaches in enterprise or embedded network security. 
Common paradigms included:

°	 Signature-based detection: Relies on known patterns 
(signatures) of malicious activity. Signature-based solutions 
are straightforward but fail to catch novel or zero-day 
attacks4.

°	 Specification-based detection: Uses strict behavioral 
specifications of in-vehicle communication. Any deviation 
from expected norms triggers an alert5. While more flexible 
than signatures (because it can detect unknown attacks 
as “out of specification”), this method can be difficult to 
maintain as systems evolve.

°	 Rule-based heuristics: Infers malicious behavior from 
certain triggers (e.g., rapid repeated CAN messages). 
Though more adaptable, heuristics often require manual 
tuning and suffer from high false-positive rates6.

As the complexity of connected cars and over-the-air (OTA) 
update processes grew, researchers recognized that purely rule-
based or signature-based approaches were insufficient3. They 
were too brittle in the face of evolving threats and could not 
handle the high-dimensional data streams generated by modern 
vehicles.

2.2.2 Emergence of ML-driven IDS

Machine Learning (ML) introduced statistical and pattern-
recognition capabilities that surpassed the limitations of manual 
rule crafting. By training models on normal vehicular data (e.g., 
CAN bus traffic, infotainment logs) and labeling malicious 
samples where available, researchers were able to construct 
systems that generalize beyond known attacks4,6. Common ML 
algorithms employed in automotive IDS research include:

•	 Support vector machines (SVMs): Useful for binary 
classification of normal vs. malicious traffic. Prior works 
showed that SVMs could detect manipulated CAN frames 
with reasonable accuracy4.

•	 Random forests: Excel at handling tabular data with mixed 
numerical and categorical features, such as sensor readings 

or network traffic attributes. Studies reported high accuracy 
but sometimes noted increased computational overhead for 
large ensembles6.

•	 Deep neural networks (DNNs): Enable automatic feature 
extraction from raw signals (e.g., waveforms of CAN 
messages or kernel-level logs). Autoencoder-based anomaly 
detection has been proposed to detect sudden deviations in 
typical communication patterns8.

More recent IDS proposals use hybrid approaches that 
combine ML classifiers with rule-based or specification-based 
checks. This dual-layer design leverages the interpretability and 
deterministic nature of rules, while still benefiting from ML’s 
capacity to flag novel behaviors.

2.3. Android security paradigms and their automotive 
adaptation

2.3.1. Android’s built-in protections: Android has matured 
significantly since its initial release, incorporating mandatory app 
sandboxing, permission models and runtime checks [8]. It also 
includes mechanisms like SELinux (Security-Enhanced Linux) 
to enforce security policies at the kernel level. On consumer 
smartphones, additional layers include Play Protect scans, code 
signing and the Verified Boot sequence. These features mitigate 
common malware vectors, such as trojaned apps or privilege 
escalation attempts9.

In the Android Automotive environment, many of these 
safeguards carry over. For instance, an app must still declare 
permissions for accessing the microphone or reading user 
contacts. However, the automotive variant of Android may 
have deeper hooks into system-level features like vehicle 
sensors, climate controls or even driver-assistance modules, 
broadening the scope of potential impact if compromised. 
Consequently, researchers have posited that Android’s existing 
security paradigm, while robust for consumer devices, must be 
supplemented by specialized IDS/IPS solutions that incorporate 
automotive-specific data sources (e.g., sensor readings, 
diagnostic data, powertrain events)2.

•	 Known Vulnerabilities and Attack Vectors: Despite 
Android’s layered security, real-world attacks have 
demonstrated vulnerabilities in areas such as:

°	 Privilege escalation: Older or unpatched versions of 
Android can be susceptible to kernel-level exploits, allowing 
malicious apps to bypass sandbox restrictions9.

°	 App collusion: Two or more malicious or compromised 
apps can share permissions illicitly and collectively perform 
operations that neither could do alone8.

°	 Debug/developer interfaces: In a development or test 
mode android allows deeper system access. A misconfigured 
or forgotten debug flag could open a direct channel for 
intrusion4.

°	 Supply chain attacks: Attackers may embed malicious 
code into third-party libraries or tamper with OTA updates, 
distributing harmful payloads to vehicles at scale2.

When such vulnerabilities exist, the implications in a vehicle 
can be more severe than on a smartphone, potentially affecting 
occupant safety. This reality underscores the necessity for robust 
detection mechanisms that quickly spot abnormal activity in 
system logs, resource usage or inter-process communication 
(IPC).
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2.4. Machine learning for malware detection on android

2.4.1. Static vs. dynamic analysis: Malware detection in the 
Android smartphone space typically employs either static or 
dynamic analysis techniques, both of which can be extended to 
the automotive domain:

°	 Static analysis: Involves decompiling or examining an app’s 
APK (Android Package Kit) to identify suspicious code 
segments, API calls or permissions. Tools like Androguard 
and FlowDroid can parse Android Manifest files to detect 
excessive permission requests or dangerous behaviors8. 
While efficient, static analysis may miss payloads activated 
at runtime or obfuscated code segments.

°	 Dynamic analysis: Monitors runtime behaviors (CPU usage, 
file I/O, network traffic, user interactions) in a sandbox or 
on a real device. Malicious patterns may emerge during app 
execution that are not visible statically9. However, dynamic 
analysis can be time-consuming and resource-intensive.

Researchers have combined these approaches-sometimes 
referred to as hybrid analysis-to achieve higher detection 
accuracy. In an Android Automotive context, dynamic behavior 
analysis might include observing how an app interacts with 
vehicular sensors or tries to communicate with critical ECUs, 
rather than simply reading phone contacts or sending SMS 
messages as on a smartphone2.

2.5. ML techniques for behavior-based detection: Many 
studies leverage ML classifiers to automate the detection of 
suspicious behaviors:

°	 Permission usage clustering: Grouping apps based on 
their permissions. Unusual or excessive combinations (e.g., 
climate control access + external server communication) 
could indicate malicious intent8.

°	 API call frequency: Monitoring how frequently certain 
APIs (camera access, network sockets, sensor data) are 
invoked. Sudden spikes or usage patterns out of line with 
typical automotive apps can raise alerts9.

°	 Resource consumption profiles: Some malicious apps 
trigger abnormal CPU/memory usage, especially if 
cryptomining or data exfiltration is involved. ML models 
can learn typical resource usage signatures for known 
benign apps and flag anomalies4.

°	 Network traffic analysis: By applying ML-based anomaly 
detection to encrypted or unencrypted traffic metadata 
(domains, IP addresses, packet sizes), it is possible to 
identify command-and-control communication patterns2.

These strategies, well-documented in the smartphone realm, 
translate into the automotive domain with the added dimension 
of in-vehicle signals and OTA communications. Early studies 
have shown that incorporating automotive-specific features-
such as CAN bus message frequencies or diagnostic query logs-
can significantly improve detection accuracy5.

2.6. In-vehicle networks and ECUs: Integration with ML 
security

2.6.1. CAN Bus and automotive ethernet security: Legacy 
in-vehicle networks, primarily the CAN bus, were never 
designed with strong security. They lack built-in authentication or 
encryption, enabling replay and injection attacks if an adversary 
gains physical or remote access5. While new standards such 

as Automotive Ethernet and Secure Onboard Communication 
(SecOC) attempt to address these shortcomings, real-world 
implementations are inconsistent and many vehicles on the road 
remain susceptible.

ML-driven solutions have been proposed to detect anomalies 
in CAN traffic by learning normal patterns of message IDs, 
intervals and data payloads5. For instance, autoencoder-based 
models can reconstruct benign traffic sequences and produce 
high reconstruction error for manipulated frames. Random 
forests or SVMs fed with engineered features (e.g., message 
frequency histograms, standard deviations of sensor readings) 
can similarly identify injected packets4. Future Android 
Automotive deployments may similarly monitor data exchange 
between the infotainment system and other ECUs for anomalies.

2.6.2. ECU-centric intrusion detection: Certain research 
efforts propose that each critical ECU hosts a lightweight 
IDS module or agent, collectively forming a distributed IDS 
architecture. ML-based classifiers at each node observe local 
traffic and periodically share aggregated statistics with a central 
security manager6. This “federated” or “cooperative” detection 
approach could be relevant in complex environments where 
the infotainment head unit is just one of many nodes, but still a 
primary interface to external networks.

However, implementing resource-intensive ML on every 
ECU can be cost-prohibitive. Many ECUs lack the computational 
or memory resources to host robust detection algorithms. 
Consequently, some authors advocate a hybrid approach wherein 
the main IVI system (running Android Automotive) performs 
more computationally intensive tasks, while ECUs report basic 
metrics or alerts2.

2.7. Related standards and regulatory requirements

2.7.1. ISO/SAE 21434: This standard provides guidelines 
for automotive cybersecurity risk management throughout a 
vehicle’s lifecycle. It requires systematic threat analysis and 
vulnerability assessments, emphasizing the integration of 
cybersecurity at each stage of design and deployment1. While 
the standard does not mandate specific solutions, it implies that 
OEMs must adopt proactive detection strategies for both known 
and evolving threats.

2.7.2. UNECE WP.29 regulations: The United Nations 
Economic Commission for Europe has published regulations 
that compel manufacturers to demonstrate robust cybersecurity 
governance and risk mitigation measures (UN Regulation No. 
155). Intrusion detection and event monitoring systems are 
strongly encouraged, with OEMs expected to present evidence 
of how they monitor and address security incidents2. The synergy 
between regulatory mandates and the technical advantages of 
ML-based detection underlines the growing importance of 
research in this space.

2.8. Gaps in literature and open research questions

Despite the progress in applying ML to automotive security, 
notable gaps persist:

2.8.1. Limited public datasets: Many automotive cybersecurity 
datasets are proprietary, limiting reproducibility of ML findings. 
Open-source repositories rarely exist, especially for real 
in-vehicle malware samples4.
2.8.2. Model explainability: Deep learning methods often 
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behave as “black boxes.” Automotive stakeholders-engineers, 
regulators, insurers-prefer transparent or at least interpretable 
results, especially for mission-critical decisions9.
2.8.3. Real-time constraints: High detection accuracy in a lab 
does not always translate to real-time detection in production 
vehicles, where hardware resources and reliability are 
paramount6.
2.8.4. Scalability and fleet learning: While the concept of 
aggregating threat intelligence from a fleet of vehicles is 
attractive, privacy and bandwidth considerations complicate 
large-scale data sharing and model updates2.
2.8.5. Robustness to adversarial ML: Attackers can attempt to 
fool ML models through evasion techniques, poisoning training 
data or forging system logs8. Research on adversarial defenses in 
automotive ML remains in its infancy.

Addressing these open questions is critical for advancing IDS/
IPS solutions that are both scientifically robust and industrially 
deployable. The remainder of this paper aims to contribute to 
bridging these gaps by proposing a comprehensive ML-based 
framework that integrates automotive-specific considerations, 
evaluates resource demands and outlines clear implementation 
paths.

2.9. Summary of literature review

Research on Android Automotive security is at the intersection 
of two rapidly evolving domains: Android smartphone security 
and automotive cybersecurity. Existing studies highlight the 
growing sophistication of attacks, from remote exploits targeting 
unprotected communication interfaces to malicious apps seeking 
elevated privileges within the infotainment ecosystem. ML-based 
techniques have demonstrated promise in classifying abnormal 
behaviors and catching zero-day exploits more effectively than 
traditional rule-based or signature-based systems.

Yet, the literature also underscores several challenges and 
open issues, particularly around real-world feasibility, data 
availability and ongoing model adaptation. These challenges 
become even more pronounced in an automotive environment 
where safety, reliability and regulatory compliance are 
non-negotiable. Against this backdrop, the next section of this 
paper outlines a proposed architecture for intrusion and malware 
detection that leverages machine learning while accommodating 
the distinct constraints of Android Automotive.

3. Proposed Architecture
This section details a machine learning (ML)-driven security 

framework designed to detect intrusions and malware within 
Android Automotive environments. The architecture addresses 
key challenges highlighted in the Literature Review, including 
real-time data processing, integration with standard automotive 
interfaces and resource constraints typical of in-vehicle systems. 
By adopting a multi-layered approach, the framework aims to 
monitor events and behaviors across all critical touchpoints: 
from application-level interactions and network traffic to 
low-level ECU communications.

3.1. Architectural principles and requirements

3.1.1. Principle of least privilege: A core tenet of the proposed 
framework is the Principle of Least Privilege, which dictates 
that each software component or service should only have the 
permissions necessary for its function. In Android Automotive, 

this extends to system apps, user-installed apps and core operating 
system services. By tightly controlling privileges, the surface 
area for lateral movement—should an attacker compromise 
one module-is greatly reduced. The ML-based detection system 
sits atop these partitioned boundaries, gathering data while 
respecting sandbox constraints.
3.1.2. Real-time responsiveness: Unlike traditional IT systems, 
in-vehicle networks operate under real-time constraints. 
Infotainment features, though less safety-critical than engine 
or braking control, still demand predictable performance and 
swift event handling. Intrusion or malware detection must not 
introduce significant latency. Hence, the proposed architecture 
incorporates lightweight inference models and prioritizes 
efficient data aggregation strategies that minimize overhead on 
the head unit’s CPU and memory.

3.1.3. Adaptability and continuous learning

New threats emerge regularly, underscoring the importance 
of a security system that can adapt to novel attack vectors. The 
proposed architecture supports continuous learning, wherein 
the system periodically updates or retrains ML models (e.g., via 
secure Over-the-Air updates) to account for new vulnerabilities 
and threat intelligence. This approach aligns with modern 
automotive development paradigms that emphasize OTA 
updates for software-defined vehicles.

3.2. Data collection layer

3.2.1. Sources of security-relevant data: Data for intrusion and 
malware detection in Android Automotive can originate from 
multiple layers of the operating environment:

a. System logs and kernel events

•	 Low-level logs tracking resource usage, kernel warnings, 
SELinux violations and process activity.

•	 Useful for detecting unusual spikes in CPU or memory 
usage and unauthorized process escalations.

b. Application-level logs

•	 Logs capturing user app behavior, permission usage, API 
calls, crash reports.

•	 Essential for identifying malicious apps masquerading as 
benign or legitimate apps with suspicious interactions.

c. Network traffic

•	 Metadata from Wi-Fi, cellular and Bluetooth connections, 
including packet counts, destination IPs/domains and 
unusual port usage.

•	 Can reveal signs of data exfiltration or remote command-
and-control channels.

d. Vehicle bus data (CAN, Automotive Ethernet)

•	 Messages and signals from ECUs, including diagnostic 
codes and sensor readings.

•	 Potentially indicative of injection or replay attacks targeting 
in-vehicle networks.

e. OTA update logs

•	 Tracking of firmware downloads, integrity checks and 
versioning to spot potential supply chain attacks.

3.2.2. Data aggregation and preprocessing

The diverse nature of these data sources (binary logs, textual 



7

Kosamia RI., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

logs, network packets, etc.) necessitates a robust aggregation 
strategy. A separate process within the head unit or an integrated 
security service, can collect events in near real-time before 
filtering and preprocessing them for ML analysis. Typical steps 
include:

•	 Time alignment: Synchronizing timestamps from various 
sources to enable correlation of events.

•	 Noise reduction: Filtering out irrelevant debug statements, 
repetitive messages or known benign anomalies.

•	 Anonymization (Optional): Stripping personally 
identifiable information (e.g., user account details, GPS 
coordinates) to maintain privacy while still retaining core 
security indicators.

Once organized, these processed datasets feed into the next 
layer for feature engineering and ML-based classification.

3.3. Feature engineering layer

•	 Domain-specific features: Effective feature engineering 
captures relevant signals from raw data, translating them into 
structures that machine learning models can interpret. Given 
the hybrid nature of Android Automotive (smartphone-like 
OS in a vehicular environment), domain-specific features 
may include:

°	 Resource usage patterns: CPU load, memory usage and 
I/O rates over time, compared against baseline vehicle 
usage profiles.

°	 Permission/action correlation: Whether an app’s declared 
permissions match its observed behaviors (e.g., a media 
player requesting vehicle data privileges).

°	 CAN bus message frequency deviations: Abnormal 
frequency or payload content in certain message IDs, 
signaling injection or replay attacks.

°	 Network flow fingerprints: Unusual domain requests, 
high-frequency bursts of traffic or accessing geolocated IP 
addresses known for malicious activity.

°	 System call sequences: Patterns of kernel-level calls made 
by apps or processes. Marked deviations may suggest 
rootkits or privilege escalation attempts.

Machine learning performance depends heavily on the 
quality of these features. Thorough domain analysis helps 
narrow down those most indicative of malicious behavior in an 
automotive context.

3.4. Feature encoding and normalization: Feature encoding 
methods ensure a consistent numeric representation across data 
sources. Common techniques include one-hot encoding for 
categorical variables (e.g., permission types, process names), 
scaling or standardizing continuous variables (e.g., CPU usage, 
memory consumption) and binning numeric values when 
continuous scales become unwieldy. Proper normalization 
prevents certain high-magnitude features (like raw network 
byte counts) from overshadowing subtler but equally important 
indicators (like unusual message ID usage frequencies).

3.5. Machine learning layer

3.5.1. Model selection criteria: Multiple ML algorithms can 
serve as the backbone of the proposed security framework. 
The choice depends on factors such as hardware constraints, 
complexity of the data and desired interpretability:

•	 Random forest

°° Robust to noise, handles mixed-type features well and 
offers relatively straightforward feature importance 
metrics.

°° Potentially resource-intensive when ensembles grow 
large.

•	 Support vector machines (SVMs)

°° Good for smaller to medium-sized datasets with clear 
margins.

°° Can struggle with very high-dimensional data unless 
carefully tuned.

•	 Neural networks

°° Convolutional or recurrent architectures can 
automatically learn feature representations from logs 
or time-series data.

°° May require hardware acceleration (GPU, NPU) for 
real-time performance.

•	 Hybrid models (Ensemble Approaches)

°° Combines the strengths of different algorithms to 
improve accuracy and reduce false positives.

°	 Example: an anomaly detection autoencoder for 
unsupervised learning, followed by a supervised 
classifier (e.g., Random Forest) for final decision-
making.

•	 Training and testing methodology

°	 Dataset assembly: Includes labeled benign data and 
malicious samples (e.g., known automotive malware, 
synthetic intrusions).

°	 Train/validation split: A typical 80/20 or 70/30 split, 
with cross-validation to maximize generalization.

°	 Evaluation metrics: Accuracy, precision, recall, 
F1-score and sometimes ROC-AUC for binary 
classification. Consider false positives cost 
(inconvenience, potential safety risk if benign functions 
are blocked) vs. false negatives (failing to detect a real 
threat).

°	 Incremental / online learning: Supports models to 
update with new data over time, key for adapting to 
evolving threats (Figure 2).

3.6. Anomaly detection module

3.6.1. Complementing supervised classification: Many 
malicious activities do not neatly fit predefined labels, especially 
in a rapidly shifting threat landscape. An anomaly detection 
module-often an autoencoder or other unsupervised techniques-
can complement supervised classifiers by flagging unusual 
patterns that deviate from the learned “normal” baseline. This 
is particularly valuable in automotive scenarios where zero-day 
attacks might manifest as subtle deviations in CAN traffic or 
resource usage.
3.6.2. Autoencoder architecture for CAN data: A common 
approach in automotive intrusion detection is to feed time-series 
data of CAN messages into an autoencoder. The network learns 
to reconstruct typical traffic patterns with minimal error. When 
it encounters injected or replayed messages, the reconstruction 
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error spikes, signaling a possible intrusion. Similar techniques 
can be applied to kernel logs or system calls.

Figure 2: ML Flowchart.

3.7. Decision and response layer

3.7.1. Detection outputs: Upon identifying suspicious activity, 
the ML layer produces alerts or confidence scores. For instance, 
a classification might label an event as “malicious”, “benign” 
or “suspect”. An anomaly detection module may return a 
reconstruction error value that exceeds a threshold. This output 
triggers the response logic.

3.7.2. Real-Time Mitigation Strategies: Potential response 
actions in Android Automotive include:

•	 Quarantine or kill process: Terminate the suspected 
process or isolate it in a restricted environment.

•	 Alert user or OEM: Notify the driver via the infotainment 
screen or send event data to a back-end server for further 
analysis.

•	 Network isolation: Restrict external communication 
temporarily if a large data exfiltration attempt is suspected.

•	 ECU-level safeguards: If a critical ECU is under suspected 
attack, the system can block incoming requests or initiate a 
safe mode until human intervention.

Careful tuning of response policies is crucial-overly 
aggressive reactions might degrade user experience or lead to 
safety concerns if legitimate processes are disrupted.

3.8. Continuous learning and OTA updates

3.8.1. Fleet-wide intelligence: Automakers increasingly use 
connected vehicle platforms to gather anonymized telemetry 
from a fleet of vehicles. The proposed architecture can leverage 
this approach by centrally aggregating suspicious event logs or 
confirmed attack data. Updated ML models-trained offline on 
richer, consolidated datasets-can then be securely pushed back to 
vehicles via OTA updates. This fleet-wide learning mechanism 
ensures that each car benefits from insights discovered elsewhere.
3.8.2. Secure delivery of updates: Because model updates 
themselves could be a target for adversaries, secure OTA protocols 
must be enforced. This includes signing and encrypting the 
updated models, verifying digital signatures on the head unit and 
ensuring rollback mechanisms exist if an update is found to be 
corrupted. A robust key management infrastructure, potentially 
with hardware security modules (HSMs), is recommended to 
protect the entire update lifecycle.

3.9. Architectural resilience and limitations

•	 Defending against adversarial attacks: ML models are 
susceptible to adversarial manipulations. Attackers might 
craft malicious inputs that bypass anomaly detection or 
inject mislabeled data into the training pipeline. Mitigation 
strategies include robust training (e.g., adversarial training

•	 Resource constraints: Although modern head units are 
more powerful than ever, not all vehicles can host large 
neural networks without noticeable performance impacts. 
Techniques such as model compression (quantization, 
pruning), on-demand inference or offloading computations 
to a dedicated AI accelerator can help balance detection 
efficacy with runtime constraints.

3.10. Summary of proposed architecture

The proposed ML-based security framework:

a.	 Collects and Aggregates automotive-specific data from 
multiple sources (system logs, app logs, network flows, 
ECU signals).

b.	 Transforms raw data into discriminative features that 
capture contextual signals relevant to automotive security.

c.	 Classifies and Detects Anomalies using supervised and 
unsupervised ML algorithms, each tailored to specific threat 
types.

d.	 Responds to detected intrusions or malware attempts 
by quarantining processes, alerting the user or OEM and 
logging events for further analysis.

e.	 Learns Continuously through a secure OTA update system, 
enabling adaptation to emerging threats and zero-day 
exploits.

This multi-layered approach aims to provide a robust 
shield against unauthorized access, malware infiltration and 
abnormal patterns indicative of a breach. In the next section, an 
implementation and testing overview will showcase how this 
architecture can be realized in practice, including performance 
metrics and resource overhead evaluations.

4. Implementation and Results
This section describes the implementation of the proposed 

machine learning (ML)-based security framework in an Android 
Automotive context, including the setup used for evaluation, 
the dataset composition, the model training and tuning process 
and the resulting detection performance. By detailing each step 
of the pipeline—from data collection to real-time inference-
this section aims to illustrate how the conceptual architecture 
can be realized on actual in-vehicle or lab-based hardware. 
Practical considerations such as resource utilization, latency and 
integration challenges are also examined.

4.1. Experimental setup

4.1.1. Hardware environment: A representative Android 
Automotive head unit or development board was employed to 
replicate realistic in-vehicle conditions. The chosen platform 
included:

°° System on Chip (SoC) with multi-core CPU and limited 
GPU acceleration.

°° 4–8 GB of RAM to simulate mid-range to high-end 
infotainment hardware.
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°° Automotive-Grade Peripherals (CAN bus interface, 
simulated sensor inputs, Wi-Fi/Bluetooth connectivity).

Though this environment may not reflect every OEM’s 
hardware configuration, it approximates typical constraints in 
terms of compute capacity and memory availability. Some tests 
also incorporated external sensor simulators or hardware-in-the-
loop setups to feed CAN messages to the head unit.

4.1.2. Software stack

•	 Android Automotive OS (custom build based on an open-
source release), configured with standard IVI functionalities 
(navigation, media, vehicle services).

•	 Logging Services to capture kernel logs, system logs and 
application logs in near real-time.

•	 Network Monitoring Tools integrated at the OS level to 
record network flows (destination IP, packet volume, port 
usage).

•	 CAN Traffic Simulator or real automotive bus for injection 
of benign vs. malicious messages.

•	 ML Framework (e.g., TensorFlow Lite, PyTorch Mobile 
or a similar lightweight library) deployed for on-device 
inference.

4.2. Dataset composition

4.2.1. Benign Data Collection: To model normal operating 
conditions, benign data was recorded under various scenarios:

•	 Typical infotainment usage

°° Streaming audio or video, interacting with navigation apps, 
adjusting climate controls.

•	 User interaction patterns

°° Installing legitimate apps from approved sources, connecting 
smartphones via Bluetooth, receiving typical OTA updates.

•	 In-vehicle sensor activity

°° Regular CAN bus traffic, including acceleration, braking, 
engine RPM signals where applicable.

This data spanned multiple driving conditions (city vs. 
highway simulation), ensuring broad coverage of normal 
behavioral variations.

4.2.4. Malicious and Intrusive Data

To train and evaluate the detection models, malicious samples 
were collected or generated to reflect real-world attack vectors:

•	 Malicious apps

°° APKs embedding known malware strains targeting Android 
devices4.

°° Trojans disguised as benign infotainment apps requesting 
excessive vehicle-related permissions.

•	 Network-based attacks

°° Simulated remote intrusions via open ports, rogue Wi-Fi 
access points or crafted Bluetooth packets.

°° Command-and-control traffic patterns for data exfiltration.

•	 CAN injection attacks

°° Replay or injection of falsified CAN messages mimicking 
potential adversaries trying to disrupt vehicle functions5.

•	 Privilege escalation attempts

°° Exploiting known Android vulnerabilities in older OS 
versions or purposely leaving debug modes active.

Each malicious scenario was carefully labeled to facilitate 
supervised learning. In the case of anomaly detection modules, 
these labels helped validate reconstruction error thresholds or 
unsupervised clustering results.

4.3. Data preprocessing and feature engineering

•	 Logging and parsing: System logs were unified into a 
central repository, with each entry tagged by a timestamp 
and source identifier (e.g., kernel, network, CAN bus, 
application). Network traffic information was represented 
at a flow level, capturing packet counts and intervals. 
Meanwhile, CAN bus data was parsed to extract message 
IDs, payloads and send rates.

4.3.1. Feature extraction

Building on the principles in the proposed architecture, the 
following features were engineered:

•	 Resource usage indicators: Rolling averages of CPU load, 
memory utilization and I/O operations per second per app 
process.

•	 Permission utilization patterns: Binary flags indicating 
whether an app invoked vehicle-related APIs (e.g., reading 
cabin temperature sensors).

•	 CAN frequency deviations: Statistical descriptors (mean, 
variance, outliers) of CAN message frequencies for key IDs.

•	 Network statistics: Packet sizes, domain name frequency, 
unusual port usage, spike detection for data uploads.

•	 Sequential system call profiles: Aggregation of call types 
invoked by an app or system process over time.

•	 Temporal aggregation: Rolling or exponential moving 
windows to capture short-term vs. long-term deviations.

Feature scaling (e.g., min-max normalization) and encoding 
(one-hot encoding for categorical data such as process names) 
ensured consistency across the dataset. Where possible, irrelevant 
or redundant features were pruned to reduce dimensionality.

4.4. Model development and training

4.4.1. Selected ML Algorithms: Several classification and 
anomaly detection algorithms were tested:

•	 Random Forest (RF): Well-suited for tabular data and 
offers interpretability via feature importance measures.

•	 Support Vector Machine (SVM): Explored for binary 
classification tasks, especially effective in smaller feature 
sets.

•	 Autoencoder for Anomaly Detection: Learns 
reconstruction of benign traffic or system events, flagging 
high reconstruction error for malicious patterns4.

•	 Hybrid Ensemble: A pipeline approach where an 
autoencoder first flags anomaly. Subsequently, flagged data 
is passed to an RF or SVM classifier for a final verdict.

4.4.2. Training and validation process

A typical split of 70% training, 20% validation and 10% 
testing was employed. Each model underwent hyperparameter 
tuning (e.g., depth of trees for RF, kernel type and regularization 
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for SVM, number of latent dimensions for autoencoders). 
Techniques such as cross-validation helped mitigate overfitting 
in smaller malicious subsets.

•	 Batch training: Conducted offline using a combination of 
local computing resources and, where available, a dedicated 
GPU for accelerated deep learning.

•	 Model quantization: Where necessary, neural network 
models were quantized (e.g., 8-bit integer format) to fit real-
time constraints in the head unit environment.

Figure 3: Model Training Workflow.

4.5. Evaluation Metrics

4.5.1. Accuracy, precision and recall: Accuracy captures the 
proportion of correct classifications overall. Precision measures 
how many flagged alerts are actually malicious and recall 
gauges how many of the total malicious instances are correctly 
identified. In an automotive context, a balanced approach is 
desirable-high precision reduces false alarms that might disrupt 
user experience, while high recall ensures genuine threats are 
not missed.
4.5.2. F1-score and AUC: The F1-score provides a harmonic 
mean of precision and recall, offering a single metric to evaluate 
model effectiveness, especially for imbalanced datasets. For 
binary classification (e.g., malicious vs. benign), ROC curves 
and the Area Under the Curve (AUC) help visualize trade-offs 
between true positive rate and false positive rate.

4.5.3. Real-time performance and resource overheads

Beyond detection quality, two additional metrics are crucial:

•	 Inference latency: The time the model takes to process a 
batch of new events. Excessive latency can undermine real-
time responsiveness.

•	 Resource usage: CPU and memory consumption, which 
affects overall infotainment performance and driver 
experience. Models requiring minimal overhead are 
generally preferable for in-vehicle deployment.

4.6. Experimental results

4.6.1. Detection performance: In preliminary testing, Random 
Forest and autoencoder-based anomaly detection performed 
strongly in identifying malicious traffic and apps:

°° Random Forest
°° Accuracy often exceeded 95% on balanced test sets.
°° Achieved a high precision (~92%) and recall (~90%), 

indicating robust identification of malicious scenarios with 
relatively few false positives.

°° SVM
°° Performed well on smaller feature subsets, but scaling to 

larger dimensional spaces required extensive tuning.
°° Often matched RF in accuracy but lagged in inference speed 

due to computational overhead.
°° Autoencoder
°° Proved particularly effective at spotting injected CAN 

traffic. Reconstruction errors spiked for replayed messages 
that deviated from normal distribution patterns.

°° Minimal false alarms once the model was trained on a 
sufficiently diverse benign dataset.

When combined in a hybrid ensemble, anomaly detection 
complemented the supervised classifier. Suspicious samples 
were flagged by the autoencoder, then scrutinized by the RF 
classifier, resulting in improved precision (reducing false 
positives for innocuous anomalies).

Latency and resource overheads

Measurements on the target infotainment hardware indicated:

•	 Random Forest required moderate CPU resources, 
processing events with an average inference latency under 
50 ms per batch of 100 events.

•	 SVM proved more computationally expensive, with 
inference latency occasionally spiking to over 100 ms in 
high-load scenarios.

•	 Autoencoder inference was relatively lightweight once 
quantized, often running under 30–40 ms per batch. 
However, training the autoencoder, if done on-device, 
was more demanding and typically deferred to offline or 
incremental learning sessions.

•	 Hybrid Ensemble introduced a small latency overhead 
(~10–15% increase) but offered the best overall detection 
performance.

•	 While all models could technically operate in real-time, 
resource usage patterns varied. Monitoring CPU usage 
during test scenarios showed that the autoencoder generally 
had the smallest footprint, while large random forest 
ensembles or SVMs required careful optimization.

4.7. Integration challenges and observations

•	 Logging overhead: Capturing high-volume data (system 
logs, network packets, CAN messages) can impact system 
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performance. Well-structured sampling and adaptive logging 
are necessary to avoid burdening the CPU or storage.

•	 Label quality: Constructing a high-fidelity malicious 
dataset remains a bottleneck, as genuine vehicle-targeted 
malware samples are scarce or proprietary. Collaborating 
with OEMs and cybersecurity communities could enrich 
training corpora.

•	 Driver experience: Security measures must remain invisible 
to the driver under normal conditions. False positives that 
terminate legitimate apps (e.g., navigation) can erode trust 
in the system.

•	 OTA Security: Delivering model updates securely is 
essential. In controlled experiments, a robust certificate-
based signing process mitigated the risk of tampered ML 
models reaching vehicles.

Despite these challenges, the experimental results suggest 
that an ML-based detection framework is both feasible and 
effective for identifying malicious activities in Android 
Automotive scenarios.

4.8. Summary of findings

The implementation and testing demonstrated that ML 
algorithms-especially random forests and autoencoder-based 
anomaly detection-achieve strong detection metrics for a range 
of attack vectors. The hybrid approach balances the advantages of 
unsupervised anomaly detection with the precision of supervised 
classification. Moreover, careful feature engineering tailored to 
automotive-specific signals (e.g., CAN patterns, vehicle-focused 
permissions) proved instrumental in elevating performance.

Real-time constraints and resource utilization are manageable 
on mid-range infotainment hardware, with quantization and 
pruning techniques further optimizing deep learning models. 
While certain practical hurdles (dataset availability, OTA security, 
false-positive management) remain, the proposed framework 
aligns with industry moves toward greater connectivity and 
software-defined features in vehicles, underlining the potential 
for widespread adoption.

5. Discussion and Future Work
Having demonstrated the feasibility and effectiveness of a 

machine learning (ML)-based security framework for Android 
Automotive, this section discusses broader implications, 
limitations and potential avenues for further refinement. 
While the results underscore the promise of data-driven threat 
detection, real-world deployment calls for careful balancing 
of performance, reliability, user experience and regulatory 
compliance. Building on the insights gained, we outline how 
future research can address emerging challenges and capitalize 
on advanced ML paradigms to bolster automotive cybersecurity.

5.1. Addressing limitations of the current approach

•	 Data scarcity and labeling: The efficacy of supervised 
or semi-supervised ML models depends heavily on the 
quantity and quality of labeled data. In the automotive 
sector, obtaining real malicious samples is challenging. 
OEMs and security researchers often maintain proprietary 
datasets, limiting public availability for reproducible 
research4. Meanwhile, simulated attacks may not always 
represent the full sophistication of real-world adversaries.

To mitigate this issue, broader industry collaboration 
and data-sharing initiatives could be fostered, perhaps under 
consortia where anonymized threat intelligence is pooled. This 
would help researchers and practitioners build richer, more 
comprehensive datasets. Additionally, synthetic data generation 
techniques-including simulation of different driving conditions 
and custom malicious scenarios-could be refined to better 
approximate real-world threats9.

•	 False positives and user experience: High detection rates 
lose their value if users experience frequent false alarms 
that disrupt legitimate functions like navigation or media 
playback. Such incidents can erode trust in the vehicle’s 
infotainment system. Although the Random Forest and 
autoencoder models tested show promising precision and 
recall, occasional false positives are inevitable, particularly 
during “edge” usage scenarios (e.g., rapidly switching apps, 
high concurrency).

Balancing sensitivity and specificity is crucial. Techniques 
like dynamic thresholding-adjusting detection thresholds based 
on context (e.g., type of network connection, user driving mode)-
may reduce benign anomalies being flagged. Another approach 
is a secondary confirmation mechanism: the system first tags 
an event as suspicious, then silently gathers additional data to 
confirm or dismiss the threat before taking disruptive action5.

•	 On-device resource constraints: Despite improvements 
in infotainment hardware, computational resources remain 
finite. Larger models or deep neural networks can strain 
the CPU/GPU, especially when simultaneously running 
resource-intensive apps (navigation, streaming). The results 
showed that some algorithms, particularly SVMs with 
complex kernels, can exhibit latency spikes under heavy 
loads.

Ongoing optimizations like quantization, pruning or 
distillation of deep networks can improve inference speed while 
retaining detection accuracy. Adopting a modular approach-
where heavier computations (e.g., retraining) occur offline or 
in the cloud-can further minimize real-time resource usage on 
the head unit2. Hybrid architectures that reserve lightweight, 
on-device anomaly detection for immediate response and 
periodically upload suspicious logs for deeper offline analysis 
could strike an optimal balance.

5.2. Interpretability and regulatory considerations

5.2.1. Explainability for automotive stakeholders: Complex 
ML models, particularly deep neural networks, often operate as 
“black boxes,” making it difficult for engineers or auditors to 
interpret how decisions are made. In an automotive environment, 
the need for explainability rises significantly due to regulatory 
and safety imperatives9. Regulators or OEM safety boards may 
demand a clear rationale for why a particular process was flagged 
as malicious, especially if it impacts critical vehicle functions.

Various techniques aim to improve ML interpretability-
ranging from Shapley values to local interpretable model-
agnostic explanations (LIME). Implementing such methods 
could reveal which features (e.g., abnormal CAN frequencies, 
suspicious API calls) triggered a detection event4. More 
transparent models foster greater trust among manufacturers, 
fleet operators and end-users, ensuring the intrusion detection 
system meets evolving automotive compliance standards.
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5.2.2. Alignment with automotive standards: Several 
regulatory frameworks and industry standards (such as ISO/
SAE 21434 and UNECE WP.29) emphasize the necessity of 
cybersecurity risk management throughout the vehicle lifecycle 
[1]. While these standards do not prescribe specific technical 
solutions, they strongly encourage continuous monitoring, 
incident detection and prompt mitigation strategies. Machine 
learning-based detection addresses these directives by providing 
adaptive, data-driven coverage against newly emerging threats.

Future iterations of automotive regulations may set guidelines 
for how in-vehicle ML models should be validated, documented 
and tested. Proactive engagement with standardization bodies 
will be key to ensuring the proposed framework remains 
compliant. For instance, verifying an ML model’s performance 
under various real-world scenarios-highway driving, urban 
traffic, extreme temperatures—could become part of the 
certification process.

5.3. Potential future enhancements 

5.3.1. Federated learning for fleet-wide security: Federated 
learning has gained traction in fields like mobile device security, 
where privacy constraints limit centralized data sharing. In an 
automotive context, thousands of vehicles could cooperatively 
train or improve intrusion detection models without transmitting 
raw data to OEM servers8. Each vehicle locally updates a model 
with its unique usage patterns and shares only the model weights 
or gradients, preserving occupant privacy.

Such an approach could accelerate the identification of 
novel attacks, as anomalies observed in one vehicle might later 
appear in another. However, implementing federated learning 
in production requires robust mechanisms for synchronization, 
secure aggregation and model version control. Adversaries 
could also attempt “model poisoning,” making robust anomaly 
detection of outlier updates a prerequisite for widespread 
deployment.

5.3.2. Transfer learning and domain adaptation: Depending 
on vehicle segments (economy, luxury, commercial fleets) and 
geographical regions, usage patterns may vary widely. A single 
global model might not generalize well to all environments. 
Transfer learning or domain adaptation methods could allow 
base models-trained on aggregated data from multiple contexts-
to be fine-tuned with a smaller set of region- or vehicle-specific 
data2.

In practice, if an OEM releases a new vehicle model with 
slightly different infotainment features or sensor configurations, 
the base detection model could be adapted rather than retrained 
from scratch. This incremental approach speeds up development 
cycles and fosters consistent security coverage across diverse 
product lines.

5.3.3. Reinforcement learning for adaptive responses

While supervised or unsupervised approaches excel at 
detection, deciding on the optimal response in real time remains 
an open challenge. Overly aggressive responses risk user 
frustration; insufficient responses may allow attacks to continue. 
Reinforcement learning (RL) could dynamically learn the best 
response strategy by maximizing certain reward signals (e.g., 
minimizing system disruptions while effectively neutralizing 
threats)4.

For instance, an RL agent might adjust detection thresholds 
in real time based on driver usage patterns, network stability 
or historical false alarms. Although RL poses additional 
complexities-exploration vs. exploitation trade-offs, safe policy 
updates in a safety-critical system-it presents an intriguing 
avenue to refine intrusion detection beyond static response rules.

5.4. Emerging threats and research directions

5.4.1. Integration with advanced driver-assistance systems 
(ADAS): As cars incorporate more advanced driver-assistance 
features, the infotainment platform may exchange critical data 
with ADAS modules. Intrusions in the infotainment domain 
could potentially escalate to safety-critical functions (e.g., lane-
keeping, adaptive cruise control). Future research should expand 
detection coverage to include sensor fusion data (e.g., LiDAR, 
radar) and ADAS logs, ensuring anomalies in these streams are 
also recognized.
5.4.2.  Hardware trojan and supply chain attacks: Sophisticated 
adversaries might compromise hardware components during 
manufacturing or the supply chain. Detecting hardware trojans 
or tampered ECUs typically goes beyond software-based 
approaches. However, anomaly detection systems can still pick 
up abnormal device behavior once such modifications are active. 
Collaborative efforts between hardware security researchers and 
ML-based software detection are pivotal for a holistic approach 
to vehicle security3.
5.4.3. Privacy-preserving analytics: Consumer data within 
Android Automotive can include personal preferences, 
location history and multimedia usage. ML-driven solutions 
must handle this data responsibly to avoid violating privacy 
regulations or user trust. Methods like differential privacy and 
secure multiparty computation may facilitate robust analytics 
while safeguarding sensitive information9. Ongoing work in 
privacy-preserving machine learning will likely converge with 
automotive cybersecurity needs.

5.5. Practical recommendations for OEMs and suppliers

•	 Phased deployment: Roll out ML-based detection 
incrementally, starting with passive monitoring and 
alerting to gauge false-positive rates before enacting active 
mitigation.

•	 Cross-functional teams: Collaborate among software 
developers, data scientists, vehicle system engineers and 
security experts for a comprehensive threat modeling 
approach.

•	 Regular model updates: Establish secure Over-the-Air 
channels for continuous improvement of detection models, 
ensuring they keep pace with emerging threats.

•	 Clear escalation paths: Implement well-defined protocols 
for how high-severity alerts are handled-both locally 
(e.g., restricting network access) and remotely (e.g., OEM 
security center analysis).

•	 Test against edge cases: Evaluate detection models in 
unusual driving and usage conditions, including extreme 
temperatures, intermittent connectivity or user behavior 
anomalies.

5.6. Summary of key insights and future outlook

The ML-based intrusion and malware detection framework 
outlined in this paper demonstrates strong potential to enhance 
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the security posture of Android Automotive systems. By 
leveraging robust feature engineering, supervised classification 
and anomaly detection, vehicles can proactively identify and 
neutralize malicious activities. Yet, as connected cars evolve 
toward more sophisticated, software-centric architectures, 
ongoing research and iterative development are paramount.

Key discussion points include the need for improved data 
access, advanced interpretability, resource optimization and 
alignment with emerging regulations. The horizon of future 
work extends into federated learning, reinforcement learning for 
adaptive responses and deeper integration with ADAS modules—
each promising to deepen the effectiveness and resilience of 
in-vehicle security. Through continued collaboration among 
OEMs, suppliers, researchers and regulatory bodies, the industry 
can realize a safer, more robust ecosystem that keeps pace with 
the ever-evolving cyber threat landscape.

6. Conclusion
This final section synthesizes the core arguments, findings 

and contributions presented throughout the paper, emphasizing 
the importance of machine learning (ML) in strengthening 
Android Automotive security. By uniting academic insights 
with practical experimentation, we have illustrated how an 
ML-centric framework can bolster intrusion and malware 
detection to meet the demanding requirements of modern 
connected vehicles. The conclusion also reiterates the broader 
implications for industry stakeholders, regulatory bodies and 
the research community, while outlining potential paths to 
ensure that future implementations remain robust, adaptable and 
aligned with evolving cyber threats.

6.1. Revisiting the objectives and contributions

The primary objective of this paper was to examine how a 
machine learning approach could be applied to intrusion and 
malware detection in Android Automotive-an operating system 
that merges the convenience of smartphone-like apps with 
in-vehicle functionalities. We set out to:

•	 Highlight security challenges in android automotive – 
We delineated the expanded attack surface resulting from 
deeper integration of infotainment systems with vehicle 
networks and the internet. Android’s extensibility, while 
beneficial for user experience, also opens new vectors for 
exploitation by malicious actors.

•	 Review the state of automotive cybersecurity – A 
structured Literature Review underscored existing work 
on automotive intrusion detection systems (IDS) android 
malware detection and the growing role of ML in tackling 
both known and zero-day threats.

•	 Propose an ML-based architecture – We outlined a 
multi-layered detection framework that aggregates logs 
from system-level processes, network traffic and in-vehicle 
signals, feeding these into sophisticated ML models. By 
blending supervised classification with anomaly detection, 
the architecture aims to achieve strong accuracy, adaptability 
and low false positives.

•	 Demonstrate practical feasibility – Implementation details 
and experimental results were shared, confirming that 
on-device ML is viable for real-time detection within typical 
resource constraints. The tests revealed high detection rates, 
manageable inference latency and clear trade-offs among 
different algorithms (Random Forest, SVM, autoencoders, 
etc.).

•	 Discuss broader implications and future work – We 
acknowledged existing hurdles, including data scarcity, 
explainability and the risk of adversarial manipulation. 
Potential solutions-federated learning, reinforcement-driven 
adaptive responses, domain adaptation-were discussed as 
promising next steps.

By achieving these aims, the paper contributes a holistic 
blueprint for integrating ML-based security solutions into 
Android Automotive, offering insights for OEMs, Tier 1 
suppliers and software developers seeking to safeguard 
connected vehicles.

6.2. Key insights from each phase of the research

•	 Security demands in the automotive landscape: Android 
Automotive transforms a vehicle’s head unit into a full-
fledged computing environment with deep integration 
into in-vehicle networks. This shift necessitates security 
measures beyond traditional automotive firewalls and 
mechanical anti-tampering. Our exploration shows how 
these demands are amplified by:

°° Connectivity Expansions: Wi-Fi hotspots, cellular 
modems, Bluetooth links, OTA update channels.

°° User-Centric Apps: Drivers now expect an app 
ecosystem akin to smartphones, expanding the potential 
for malicious or trojaned applications.

°° Cross-Domain Impact: Compromises in the 
infotainment domain can escalate to safety-critical 
ECUs if insufficient isolation is in place.

Our findings confirm that static or signature-based security 
methods alone fall short in detecting modern, adaptive attacks. 
A pivot toward intelligent, data-driven monitoring is both timely 
and necessary.

6.1. Literature review and theoretical foundations

The Literature Review identified parallels with existing work in:

•	 Automotive IDS: Characterized by CAN bus anomaly 
detection, specification-based checks and (increasingly) 
ML-based approaches.

•	 Android malware analysis: Built around static/dynamic 
analysis, permission scrutiny and advanced classifiers to 
identify rogue apps.

By merging the two domains-automotive security and 
Android security—this paper provides a conceptual bridge, 
illustrating that proven techniques from smartphone malware 
detection can be adapted for a vehicle environment. At the same 
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time, vehicle-specific nuances (real-time constraints, embedded 
hardware limitations, CAN/Ethernet data) require bespoke 
solutions. Hence, the impetus for a combined architecture that 
benefits from the best of both fields.

6.2.3. Proposed architecture

The Literature Review identified parallels with existing work in:

•	 Automotive IDS: Characterized by CAN bus anomaly 
detection, specification-based checks and (increasingly) 
ML-based approaches.

•	 Android malware analysis: Built around static/dynamic 
analysis, permission scrutiny and advanced classifiers to 
identify rogue apps.

By merging the two domains-automotive security and 
Android security—this paper provides a conceptual bridge, 
illustrating that proven techniques from smartphone malware 
detection can be adapted for a vehicle environment. At the same 
time, vehicle-specific nuances (real-time constraints, embedded 
hardware limitations, CAN/Ethernet data) require bespoke 
solutions. Hence, the impetus for a combined architecture that 
benefits from the best of both fields.

6.3. Implementation and empirical results

Our practical experiments substantiated the efficacy of ML-based 
intrusion and malware detection. Notably:

•	 High detection rates: Precision and recall scores often 
exceeded 90%, with autoencoders showing strong aptitude 
in spotting manipulations in network and bus-level data.

•	 Manageable resource footprint: While resource usage 
varied, optimized or quantized models ran within real-time 
constraints on typical infotainment hardware.

•	 False positives vs. real-world integration: Findings 
reinforce that calibration is essential to minimize user 
disruption. A layered approach-initial anomaly tagging 
followed by secondary classification-proved effective in 
reducing false alarms.

Given these empirical insights, we conclude that ML-based 
detection strategies are not only theoretically sound but also 
feasible for near-term deployment in production vehicles, 
pending careful engineering and validation.

6.4. Broader implications for industry and policy

Aligning with automotive cybersecurity standards: 
Emerging regulatory frameworks, such as ISO/SAE 21434 
and the UNECE WP.29, promote continuous risk assessment, 
event monitoring and swift threat response. By incorporating an 
ML-based IDS as a core pillar of their cybersecurity strategy, 
OEMs can proactively address these mandates. The adaptive 
nature of ML—detecting unknown or zero-day attacks—reflects 
well on recommended guidelines that stress ongoing vigilance 
rather than static compliance checklists1,2.

Enhancing consumer trust: As vehicles become more 
sophisticated, consumers may grow wary of the potential privacy 
and security risks. Demonstrable, reliable threat detection can 
reassure drivers that their personal data (contacts, media) and 
vehicle systems (steering, braking) are shielded from malicious 
tampering. Consequently, adopting these technologies could 
become a market differentiator for OEMs, positioning them as 
leaders in secure, software-defined vehicles.

Future-proofing through collaborative ecosystems: The 
concept of fleet-wide learning—where data or model updates 
are aggregated across thousands of vehicles-promises a self-
reinforcing security ecosystem. However, achieving such 
large-scale collaboration requires robust privacy frameworks, 
standardization of data formats and shared threat intelligence 
protocols among industry players. Initiatives like the Auto-ISAC 
(Information Sharing and Analysis Center) could facilitate these 
exchanges, ensuring that new threats uncovered in one region or 
brand inform the security posture of others9.

Figure 6: Lifecycle of ML based Detection Framework.

6.5. Reflecting on challenges and limitations

Despite encouraging results, several constraints must be 
acknowledged:

•	 Data availability: Genuine malicious automotive datasets 
remain scarce or proprietary, complicating the development 
of universally validated models.

•	 Adversarial resilience: Attackers can attempt to manipulate 
inputs to evade ML detection or corrupt training pipelines. 
Future research should focus on adversarial training 
techniques and robust data validation.

•	 Explainability: Deep ML models can lack transparency. 
Regulatory bodies and OEMs may demand clear explanations 
for why certain apps or processes were flagged. Building 
interpretability mechanisms into the detection pipeline will 
be crucial.

•	 Deployment complexity: Integrating an ML-based IDS 
into a production vehicle’s software stack involves careful 
orchestration with existing real-time systems. Minor 
misconfigurations might introduce latencies or hamper 
user-facing functionalities like media playback, navigation 
or telematics.

These limitations underscore that robust cybersecurity is an 
iterative endeavor, requiring ongoing research, cross-disciplinary 
collaboration and iterative deployment strategies.

C. Pathways for future evolution

•	 Advanced ML techniques

°	 Federated learning: Encourages distributed training 
across a fleet of vehicles without centralizing user data. 
This could accelerate detection of emergent threats 
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while respecting occupant privacy constraints8.
°	 Reinforcement learning: Goes beyond detection to 

dynamically adjust threat response policies, balancing 
intrusion mitigation with minimal user disruption4.

°	 Transfer and domain adaptation: Allows global 
“base models” to be refined for specific vehicle models 
or geographies, acknowledging that usage patterns vary 
significantly among different demographics2.

6.4. Integration with ADAS/autonomous systems

As advanced driver-assistance systems (ADAS) and 
autonomous features proliferate, cybersecurity must extend 
beyond infotainment. Threats to sensors (LiDAR, radar), vision 
processing units or drive-by-wire controls pose higher stakes. 
Future work can incorporate real-time sensor fusion data into 
an IDS framework, enabling the system to detect anomalies 
in environmental perception that might result from malicious 
tampering.

6.6. Expansion to electric and connected ecosystems

Electric vehicles (EVs) rely heavily on software-defined 
powertrain controls and robust battery management systems. 
IoT-like connectivity to charging stations introduces additional 
surfaces for potential compromise. A unified ML-based security 
solution could also encompass communications with smart grid 
infrastructure, opening new avenues for research into secure 
charging protocols, load balancing and energy management3,5.

6.7. Recommendations for stakeholders

•	 OEMs and Tier 1 suppliers

°° Invest in building cross-functional teams that integrate 
cybersecurity professionals, AI/ML specialists and 
automotive engineers.

°° Encourage ecosystem-wide threat intelligence sharing to 
stay ahead of rapidly evolving exploits.

°° Plan for multi-year lifecycle support, ensuring ML models 
can be updated securely to handle new attack vectors.

•	 Security researchers and academics

°° Focus on creating open-source datasets and benchmarks to 
spur reproducible research.

°° Explore adversarial ML defenses and robust training 
approaches tailored to automotive data structures.

°° Collaborate with regulatory bodies to define best practices 
for validating ML-based security systems in vehicles.

•	 Regulatory and standards organizations

°° Consider guidelines that recognize the value of machine 
learning in threat detection but also address transparency, 
testing methodologies and post-deployment monitoring.

°° Encourage standardized data formats and logging schemas, 
enabling broader adoption of ML-based solutions across 
different OEMs and models.

•	 End users (Drivers)

°° Demand vehicles that demonstrate clear security 
measures and reputable OTA update practices.

°° Remain vigilant about installing only vetted apps, 
avoiding questionable third-party sources that could 
harbor malware.

B. Vision for a secure, software-driven future

Software-defined vehicles (SDVs) herald an era where 
infotainment systems, telematics and ADAS features converge 
into a unified digital ecosystem. ML-driven security architectures, 
such as the one advanced in this paper, will be instrumental in 
mitigating cyber risks in this interconnected context. The ability 
to detect anomalies, adapt to new threats and coordinate defense 
strategies across large fleets transforms cybersecurity from a 
reactive process into a continuously evolving safeguard.

Long-term, we anticipate that in-vehicle ML will extend 
beyond intrusion detection to broader predictive maintenance, 
driver behavior analysis and even cooperative safety measures 
in connected traffic ecosystems. In this vision, each vehicle not 
only protects itself but also shares crucial intel with the wider 
network of cars and infrastructure, creating a self-improving, 
collective security posture. Such synergy demands ongoing 
dialogue between software developers, OEMs, researchers and 
policymakers to ensure technology evolves responsibly and 
inclusively.

6.8. Concluding remarks

This paper has argued that machine learning-with its capacity 
to analyze rich, high-dimensional data—provides a powerful 
defense against the intricate, evolving threats faced by Android 
Automotive. The fusion of automotive security insights with 
advanced ML techniques represents not just an incremental 
improvement, but a paradigm shift from static or signature-
centric defenses to proactive, adaptive protection.

In closing, our research and implementation results affirm 
that ML-based solutions can effectively identify and neutralize 
threats, provided they are carefully engineered for automotive 
resource constraints, real-time responsiveness and lifecycle 
longevity. By maintaining this synergy, the industry can meet 
regulatory expectations, reassure consumers and ultimately pave 
the way for safer, more secure connected vehicles.

The road ahead involves deepening these capabilities, refining 
models against adversarial attacks and continually integrating 
fresh data from fleets worldwide. Through collaborative effort 
across the automotive and cybersecurity landscapes, the promise 
of robust, ML-driven security for Android Automotive stands 
both realizable and essential. 
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