
Securing Android Automotive: A Machine Learning Approach to Intrusion and
Malware Detection

Ronak Indrasinh Kosamia*

Citation: Kosamia RI. Securing Android Automotive: A Machine Learning Approach to Intrusion and Malware Detection. J Artif
Intell Mach Learn & Data Sci 2023 1(1), 2664-2679. DOI: doi.org/10.51219/JAIMLD/ronak-indrasinh-kosamia/566

Received: 02 January, 2023; Accepted: 18 January, 2023; Published: 20 January, 2023

*Corresponding author: Ronak Indrasinh Kosamia, USA, E-mail: kosamiar@gmail.com

Copyright: © 2023 Kosamia RI., This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

1

Research ArticleVol: 1 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/ronak-indrasinh-kosamia/566

 A B S T R A C T
Modern vehicles increasingly incorporate connected technologies that rival traditional computing platforms in capability and

complexity. Among these android Automotive has emerged as a popular infotainment platform, offering a rich ecosystem of apps
and services. However, heightened connectivity also expands the attack surface, making the vehicle susceptible to malware and
intrusion attempts targeting critical systems. This paper proposes a machine learning (ML)-based framework to detect intrusions
and malware within Android Automotive environments. By analyzing system logs, app behaviors, network flows and ECU
interactions, we illustrate how ML models can adaptively detect anomalies that may indicate malicious activity. Our approach
emphasizes a multi-layered defense, leveraging data from diverse sources and employing both supervised and anomaly detection
techniques to identify emerging threats. We offer an in-depth discussion on feature engineering, model selection, on-device
performance considerations and how to deploy these security mechanisms in a resource-constrained automotive setting. We also
highlight open challenges—including labeling complexities, false-positive management and the secure delivery of model updates
via Over-the-Air (OTA) channels. The results and recommendations presented aim to guide automotive OEMs, Tier 1 suppliers
and cybersecurity practitioners toward implementing robust, machine learning-driven security solutions for next-generation
vehicles.

Keywords: Android Automotive, Machine Learning (ML), Intrusion Detection, Malware Detection, In-Vehicle Infotainment
(IVI), Automotive Cybersecurity, Connected Vehicles, Anomaly Detection, Over-the-Air (OTA) Updates, Feature Engineering,
Resource-Constrained Environments, Automotive OEMs

1. Introduction
A. Setting the context of android automotive

Over the last decade, the automotive industry has undergone
a profound transformation, fueled by the convergence of
information technology, connectivity solutions and vehicle
electronics. Once perceived as mechanical machines
supplemented by embedded control units, modern automobiles
have become “computers on wheels,” integrating complex

software stacks and data-driven functionalities1. Nowhere is
this transformation more evident than in the realm of in-vehicle
infotainment (IVI), where operating systems such as Android
Automotive provide a smartphone-like environment within the
car dashboard.

Android Automotive is distinct from Android Auto. While
Android Auto is primarily a projection-based system that
relies on a user’s smartphone android Automotive is embedded

https://doi.org/10.51219/JAIMLD/ronak-indrasinh-kosamia/566
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/rajalakshmi-thiruthuraipondi-natarajan/446
https://doi.org/10.51219/JAIMLD/ronak-indrasinh-kosamia/566

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Kosamia RI.,

2

natively into the vehicle’s hardware. This embedded approach
grants deeper and more direct integration with the car’s sensors
and subsystems, enabling features like climate control, seat
adjustments, advanced media playback, navigation, voice
assistants and more2. With this level of integration comes a
notable expansion in functionality-coupled with significant
security challenges.

The integration of Android’s vast ecosystem of applications
and services into a vehicle environment raises questions about
the attack surface. Users can install a variety of apps, connect
their vehicle to wireless networks and interact with external
devices over Bluetooth, Wi-Fi, USB ports and other interfaces.
As connectivity has expanded, so has the potential for nefarious
actors to exploit vulnerabilities at the application layer, the
operating system layer or even within the vehicle’s internal
networks (e.g., CAN, LIN or Ethernet-based segments)3. While
traditional automotive cybersecurity measures have focused
on hardware isolation and signature-based detection of known
exploits, the increased complexity of Android-based platforms
suggests the need for more adaptive and intelligent protective
strategies.

B. Motivation for machine learning in automotive
cybersecurity

Machine learning (ML) has gained prominence as a
powerful tool for anomaly detection, intrusion detection and
malware classification in conventional IT environments4. In the
smartphone domain, ML is often used to analyze application
behaviors (such as API usage, permissions, traffic patterns) to
detect malicious apps. This principle can be extended to Android
Automotive, albeit with unique constraints and opportunities:

•	 Increased data complexity: Android Automotive systems
log a wealth of data-system calls, app interactions, ECU
messages, network telemetry. ML techniques can leverage
these high-dimensional inputs to discern hidden patterns
that might be missed by traditional rule-based systems5.

•	 Real-time constraints: Vehicles operate in real-time. A
cybersecurity breach that compromises driving-critical
functions (e.g., engine control) requires immediate detection
and response. ML models-once trained-can quickly classify
anomalies, offering near real-time protection6.

•	 Evolving threat landscape: Automotive systems face zero-
day exploits, supply chain attacks and rapidly morphing
malware strains. ML-based solutions excel at identifying
behaviors indicative of new or unknown threats, surpassing
static signature-based approaches7.

While the potential for ML-driven detection is immense,
the automotive setting introduces constraints not typically

encountered in consumer smartphones: the hardware resources
for infotainment can be more limited and any security
mechanism must not degrade the user experience or distract
from driving tasks8. Additionally, the automotive industry has
stringent regulatory requirements and long product life cycles,
implying that solutions must remain effective and maintainable
over many years.

C. Expanding attack surfaces in the connected car ecosystem

Automotive security encompasses not only the infotainment
head unit but also any networked modules connected to it.
Android Automotive’s deeper hooks into vehicle components—
such as climate controls, seat sensors or battery management for
electric cars-could be leveraged by attackers if vulnerabilities
are found2. Furthermore, the presence of cellular modems, Wi-Fi
hotspots, Bluetooth and external USB ports creates multiple
potential entry points for adversaries:

•	 Remote attacks: Using cellular or Wi-Fi interfaces,
attackers can attempt to exploit unpatched vulnerabilities in
the operating system or installed applications3.

•	 Local attacks: Malicious USB devices, compromised
OBD-II dongles or even unauthorized apps installed
by unwary users could open the door to system-level
compromises9.

•	 Over-the-air updates: While OTA updates are a
cornerstone of modern automotive software maintenance,
they must be implemented securely. A compromised update
mechanism could distribute malware or tampered firmware
to thousands of vehicles simultaneously5.

Given these risks, intrusion detection systems (IDS) and
malware detection tools are no longer optional. They must be
integral to the automotive software architecture. ML-based
detection solutions, when architected properly, have the
flexibility to analyze multiple data streams (logs, network flows,
sensor readings) and adapt over time, offering a more robust
defensive posture compared to static solutions.

D. Machine learning approaches for intrusion and malware
detection

ML techniques broadly fall into supervised, unsupervised
and semi-supervised paradigms:

•	 Supervised learning: Models learn from labeled datasets—
where examples of “benign” and “malicious” behaviors are
clearly annotated—and attempt to generalize to unseen data.
While powerful, supervised ML requires comprehensive
labeled data, which can be challenging in the automotive
realm because real-world malware/intrusion samples may
be rare or undisclosed4.

•	 Unsupervised/anomaly detection: Models attempt to
characterize “normal” behavior and flag deviations as
potential anomalies. This can be effective in complex,
evolving environments like vehicles, where new types
of attacks might differ significantly from typical usage
patterns10.

•	 Semi-supervised learning: Combines elements of both,
making use of abundant unlabeled data for baseline modeling
and a smaller set of labeled examples for fine-tuning. This
approach might be especially relevant to automotive data,
which is both voluminous and varied8.

3

Kosamia RI., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

within Android Automotive systems, reflecting the state-of-the-
art knowledge. Specifically, our contributions are:

•	 Holistic threat modeling: Identifying high-risk vectors
where the Android Automotive environment could be
compromised, including application-layer attacks, network-
based intrusions and vulnerabilities in over-the-air update
processes5.

•	 Data-driven detection architecture: Proposing an end-to-
end pipeline that collects system and network logs, extracts
relevant features and feeds these into ML models tailored
for automotive contexts4.

•	 Evaluation in a resource-constrained environment:
Discussing the trade-offs between model complexity,
detection latency and false-positive rates, with particular
attention to automotive hardware limitations and user
experience8.

•	 Recommendations for real-world deployment:
Addressing version control, secure OTA model updates,
data privacy and regulatory compliance challenges that
OEMs might encounter during commercialization1.

We anticipate that this blueprint will inform the design and
deployment of future security solutions, guiding manufacturers,
Tier 1 suppliers and researchers toward more adaptive and
resilient automotive defense strategies.

1.1. Concluding remarks on the introduction

In this extended Introduction, we have articulated the
motivation behind securing Android Automotive, the challenges
it poses and the rationale for leveraging machine learning to
enhance intrusion and malware detection capabilities. We have
also laid out the structure for the remainder of the paper and
clarified its intended scope and contributions. With the stakes
high for consumer safety and privacy-and the automotive
industry evolving at an unprecedented pace-this topic is both
timely and critical.

In the following sections, we will delve into the existing
literature on automotive intrusion detection (Section 2), propose
a detailed ML-based security architecture (Section 3), walk
through implementation details and results (Section 4) and
engage in a discussion of implications and future research
directions (Section 5). We will then conclude by summarizing
the major takeaways and setting a roadmap for continued
innovation (Section 6).

2. Literature Review
This section surveys the existing body of research on

automotive cybersecurity, with particular emphasis on intrusion
detection and malware mitigation strategies relevant to Android
Automotive. It also draws connections to broader Android
security practices, highlighting how techniques from the
smartphone domain can be adapted or extended for vehicular
contexts. Finally, the review underscores the roles of machine
learning (ML) approaches in identifying and classifying
threats, offering insights into both established and emerging
methodologies.

2.1. Historical perspective on automotive cybersecurity

Early vehicular systems were largely isolated and relied
on proprietary protocols such as the Controller Area Network
(CAN). Researchers initially focused on physical attacks and

Common ML algorithms for intrusion/malware detection
include random forests, support vector machines (SVMs),
deep neural networks and autoencoders for anomaly detection.
In automotive contexts, deeper integration with system logs-
potentially at the kernel or ECU communication layers—
could provide more accurate threat detection, but also raises
complexities of data volume and labeling.

E. Regulatory and industry context

The automotive domain is subject to functional safety
standards (e.g., ISO 26262) and emerging cybersecurity
regulations. The ISO/SAE 21434 standard, for instance, outlines
best practices for automotive cybersecurity engineering,
mandating threat analysis and risk assessment throughout the
vehicle’s lifecycle1. Additionally, the United Nations Economic
Commission for Europe (UNECE) regulations on cyber security
(UN Regulation No. 155) require manufacturers to demonstrate
how they manage and mitigate cyber risks.

These regulations indirectly incentivize the development
of comprehensive intrusion detection and malware prevention
measures that can operate effectively in vehicles on a global
scale. An ML-powered detection system for Android Automotive
would not only address these requirements but also position
OEMs to proactively adapt to zero-day threats, thus reducing
long-term liability and potential recall costs.

F. Challenges specific to android automotive security

Although Android’s robust permission model and sandboxing
provide a starting layer of security, unique challenges persist in
the automotive adaptation:

•	 System resource constraints: While some high-end IVI
systems feature powerful hardware, many vehicles still
operate under resource limitations (e.g., CPU, GPU, memory
availability). ML algorithms must be optimized to function
efficiently without degrading core user experiences4.

•	 Extended lifecycle management: Automobiles remain
on the road for a decade or more. This longevity contrasts
with consumer electronics, where frequent hardware
replacements or upgrades are common. Automotive ML
models thus require ongoing maintenance, updates and
revalidation2.

•	 High reliability requirements: Malfunctioning security
software could potentially impact driving-critical functions.
A false positive that wrongly identifies a legitimate system
process as malicious could degrade the IVI or, in worst-case
scenarios, hamper vehicle operation3.

•	 Limited training data for attacks: In automotive
environments, genuine malicious samples are rare and not
always publicly disclosed. Data collected from “honeypot
vehicles” or controlled labs might not reflect the full
spectrum of real-world attacks10.

Overcoming these challenges necessitates a multidisciplinary
approach, merging expertise in automotive engineering,
cybersecurity, software development and data science. The
remainder of this paper delves into how such an approach can
be operationalized.

G. Outline and contributions of this paper

The primary objective of this work is to demonstrate a viable
ML-based framework for intrusion and malware detection

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Kosamia RI.,

4

diagnostic hacking, as remote access avenues were limited3.
However, as vehicles began to incorporate telematics units,
Wi-Fi hotspots, Bluetooth and even cellular connectivity, the
potential for remote intrusions grew substantially. Seminal
works demonstrated how attackers could exploit vulnerabilities
in infotainment systems to pivot to safety-critical electronic
control units (ECUs), prompting the industry and academia to
reevaluate automotive security measures3.

In response to these revelations, vehicle manufacturers
adopted defensive strategies like firewalling between the
infotainment network and drivetrain ECUs, secure boot
mechanisms and code-signing. Yet, the rapid rise of software-
defined vehicles-with frequent updates and an app-like
ecosystem-introduced a fresh wave of concerns that traditional,
static solutions (e.g., signature-based malware detection) could
not adequately address1. This gap set the stage for more dynamic,
adaptive solutions, including the use of machine learning
algorithms tailored for detecting anomalies and malicious
behaviors in real time.

2.2. Evolution of intrusion detection systems in vehicles

2.2.1. Conventional IDS approaches: Intrusion Detection
Systems (IDS) in automotive applications initially borrowed
from approaches in enterprise or embedded network security.
Common paradigms included:

°	 Signature-based detection: Relies on known patterns
(signatures) of malicious activity. Signature-based solutions
are straightforward but fail to catch novel or zero-day
attacks4.

°	 Specification-based detection: Uses strict behavioral
specifications of in-vehicle communication. Any deviation
from expected norms triggers an alert5. While more flexible
than signatures (because it can detect unknown attacks
as “out of specification”), this method can be difficult to
maintain as systems evolve.

°	 Rule-based heuristics: Infers malicious behavior from
certain triggers (e.g., rapid repeated CAN messages).
Though more adaptable, heuristics often require manual
tuning and suffer from high false-positive rates6.

As the complexity of connected cars and over-the-air (OTA)
update processes grew, researchers recognized that purely rule-
based or signature-based approaches were insufficient3. They
were too brittle in the face of evolving threats and could not
handle the high-dimensional data streams generated by modern
vehicles.

2.2.2 Emergence of ML-driven IDS

Machine Learning (ML) introduced statistical and pattern-
recognition capabilities that surpassed the limitations of manual
rule crafting. By training models on normal vehicular data (e.g.,
CAN bus traffic, infotainment logs) and labeling malicious
samples where available, researchers were able to construct
systems that generalize beyond known attacks4,6. Common ML
algorithms employed in automotive IDS research include:

•	 Support vector machines (SVMs): Useful for binary
classification of normal vs. malicious traffic. Prior works
showed that SVMs could detect manipulated CAN frames
with reasonable accuracy4.

•	 Random forests: Excel at handling tabular data with mixed
numerical and categorical features, such as sensor readings

or network traffic attributes. Studies reported high accuracy
but sometimes noted increased computational overhead for
large ensembles6.

•	 Deep neural networks (DNNs): Enable automatic feature
extraction from raw signals (e.g., waveforms of CAN
messages or kernel-level logs). Autoencoder-based anomaly
detection has been proposed to detect sudden deviations in
typical communication patterns8.

More recent IDS proposals use hybrid approaches that
combine ML classifiers with rule-based or specification-based
checks. This dual-layer design leverages the interpretability and
deterministic nature of rules, while still benefiting from ML’s
capacity to flag novel behaviors.

2.3. Android security paradigms and their automotive
adaptation

2.3.1. Android’s built-in protections: Android has matured
significantly since its initial release, incorporating mandatory app
sandboxing, permission models and runtime checks [8]. It also
includes mechanisms like SELinux (Security-Enhanced Linux)
to enforce security policies at the kernel level. On consumer
smartphones, additional layers include Play Protect scans, code
signing and the Verified Boot sequence. These features mitigate
common malware vectors, such as trojaned apps or privilege
escalation attempts9.

In the Android Automotive environment, many of these
safeguards carry over. For instance, an app must still declare
permissions for accessing the microphone or reading user
contacts. However, the automotive variant of Android may
have deeper hooks into system-level features like vehicle
sensors, climate controls or even driver-assistance modules,
broadening the scope of potential impact if compromised.
Consequently, researchers have posited that Android’s existing
security paradigm, while robust for consumer devices, must be
supplemented by specialized IDS/IPS solutions that incorporate
automotive-specific data sources (e.g., sensor readings,
diagnostic data, powertrain events)2.

•	 Known Vulnerabilities and Attack Vectors: Despite
Android’s layered security, real-world attacks have
demonstrated vulnerabilities in areas such as:

°	 Privilege escalation: Older or unpatched versions of
Android can be susceptible to kernel-level exploits, allowing
malicious apps to bypass sandbox restrictions9.

°	 App collusion: Two or more malicious or compromised
apps can share permissions illicitly and collectively perform
operations that neither could do alone8.

°	 Debug/developer interfaces: In a development or test
mode android allows deeper system access. A misconfigured
or forgotten debug flag could open a direct channel for
intrusion4.

°	 Supply chain attacks: Attackers may embed malicious
code into third-party libraries or tamper with OTA updates,
distributing harmful payloads to vehicles at scale2.

When such vulnerabilities exist, the implications in a vehicle
can be more severe than on a smartphone, potentially affecting
occupant safety. This reality underscores the necessity for robust
detection mechanisms that quickly spot abnormal activity in
system logs, resource usage or inter-process communication
(IPC).

5

Kosamia RI., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

2.4. Machine learning for malware detection on android

2.4.1. Static vs. dynamic analysis: Malware detection in the
Android smartphone space typically employs either static or
dynamic analysis techniques, both of which can be extended to
the automotive domain:

°	 Static analysis: Involves decompiling or examining an app’s
APK (Android Package Kit) to identify suspicious code
segments, API calls or permissions. Tools like Androguard
and FlowDroid can parse Android Manifest files to detect
excessive permission requests or dangerous behaviors8.
While efficient, static analysis may miss payloads activated
at runtime or obfuscated code segments.

°	 Dynamic analysis: Monitors runtime behaviors (CPU usage,
file I/O, network traffic, user interactions) in a sandbox or
on a real device. Malicious patterns may emerge during app
execution that are not visible statically9. However, dynamic
analysis can be time-consuming and resource-intensive.

Researchers have combined these approaches-sometimes
referred to as hybrid analysis-to achieve higher detection
accuracy. In an Android Automotive context, dynamic behavior
analysis might include observing how an app interacts with
vehicular sensors or tries to communicate with critical ECUs,
rather than simply reading phone contacts or sending SMS
messages as on a smartphone2.

2.5. ML techniques for behavior-based detection: Many
studies leverage ML classifiers to automate the detection of
suspicious behaviors:

°	 Permission usage clustering: Grouping apps based on
their permissions. Unusual or excessive combinations (e.g.,
climate control access + external server communication)
could indicate malicious intent8.

°	 API call frequency: Monitoring how frequently certain
APIs (camera access, network sockets, sensor data) are
invoked. Sudden spikes or usage patterns out of line with
typical automotive apps can raise alerts9.

°	 Resource consumption profiles: Some malicious apps
trigger abnormal CPU/memory usage, especially if
cryptomining or data exfiltration is involved. ML models
can learn typical resource usage signatures for known
benign apps and flag anomalies4.

°	 Network traffic analysis: By applying ML-based anomaly
detection to encrypted or unencrypted traffic metadata
(domains, IP addresses, packet sizes), it is possible to
identify command-and-control communication patterns2.

These strategies, well-documented in the smartphone realm,
translate into the automotive domain with the added dimension
of in-vehicle signals and OTA communications. Early studies
have shown that incorporating automotive-specific features-
such as CAN bus message frequencies or diagnostic query logs-
can significantly improve detection accuracy5.

2.6. In-vehicle networks and ECUs: Integration with ML
security

2.6.1. CAN Bus and automotive ethernet security: Legacy
in-vehicle networks, primarily the CAN bus, were never
designed with strong security. They lack built-in authentication or
encryption, enabling replay and injection attacks if an adversary
gains physical or remote access5. While new standards such

as Automotive Ethernet and Secure Onboard Communication
(SecOC) attempt to address these shortcomings, real-world
implementations are inconsistent and many vehicles on the road
remain susceptible.

ML-driven solutions have been proposed to detect anomalies
in CAN traffic by learning normal patterns of message IDs,
intervals and data payloads5. For instance, autoencoder-based
models can reconstruct benign traffic sequences and produce
high reconstruction error for manipulated frames. Random
forests or SVMs fed with engineered features (e.g., message
frequency histograms, standard deviations of sensor readings)
can similarly identify injected packets4. Future Android
Automotive deployments may similarly monitor data exchange
between the infotainment system and other ECUs for anomalies.

2.6.2. ECU-centric intrusion detection: Certain research
efforts propose that each critical ECU hosts a lightweight
IDS module or agent, collectively forming a distributed IDS
architecture. ML-based classifiers at each node observe local
traffic and periodically share aggregated statistics with a central
security manager6. This “federated” or “cooperative” detection
approach could be relevant in complex environments where
the infotainment head unit is just one of many nodes, but still a
primary interface to external networks.

However, implementing resource-intensive ML on every
ECU can be cost-prohibitive. Many ECUs lack the computational
or memory resources to host robust detection algorithms.
Consequently, some authors advocate a hybrid approach wherein
the main IVI system (running Android Automotive) performs
more computationally intensive tasks, while ECUs report basic
metrics or alerts2.

2.7. Related standards and regulatory requirements

2.7.1. ISO/SAE 21434: This standard provides guidelines
for automotive cybersecurity risk management throughout a
vehicle’s lifecycle. It requires systematic threat analysis and
vulnerability assessments, emphasizing the integration of
cybersecurity at each stage of design and deployment1. While
the standard does not mandate specific solutions, it implies that
OEMs must adopt proactive detection strategies for both known
and evolving threats.

2.7.2. UNECE WP.29 regulations: The United Nations
Economic Commission for Europe has published regulations
that compel manufacturers to demonstrate robust cybersecurity
governance and risk mitigation measures (UN Regulation No.
155). Intrusion detection and event monitoring systems are
strongly encouraged, with OEMs expected to present evidence
of how they monitor and address security incidents2. The synergy
between regulatory mandates and the technical advantages of
ML-based detection underlines the growing importance of
research in this space.

2.8. Gaps in literature and open research questions

Despite the progress in applying ML to automotive security,
notable gaps persist:

2.8.1. Limited public datasets: Many automotive cybersecurity
datasets are proprietary, limiting reproducibility of ML findings.
Open-source repositories rarely exist, especially for real
in-vehicle malware samples4.
2.8.2. Model explainability: Deep learning methods often

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Kosamia RI.,

6

behave as “black boxes.” Automotive stakeholders-engineers,
regulators, insurers-prefer transparent or at least interpretable
results, especially for mission-critical decisions9.
2.8.3. Real-time constraints: High detection accuracy in a lab
does not always translate to real-time detection in production
vehicles, where hardware resources and reliability are
paramount6.
2.8.4. Scalability and fleet learning: While the concept of
aggregating threat intelligence from a fleet of vehicles is
attractive, privacy and bandwidth considerations complicate
large-scale data sharing and model updates2.
2.8.5. Robustness to adversarial ML: Attackers can attempt to
fool ML models through evasion techniques, poisoning training
data or forging system logs8. Research on adversarial defenses in
automotive ML remains in its infancy.

Addressing these open questions is critical for advancing IDS/
IPS solutions that are both scientifically robust and industrially
deployable. The remainder of this paper aims to contribute to
bridging these gaps by proposing a comprehensive ML-based
framework that integrates automotive-specific considerations,
evaluates resource demands and outlines clear implementation
paths.

2.9. Summary of literature review

Research on Android Automotive security is at the intersection
of two rapidly evolving domains: Android smartphone security
and automotive cybersecurity. Existing studies highlight the
growing sophistication of attacks, from remote exploits targeting
unprotected communication interfaces to malicious apps seeking
elevated privileges within the infotainment ecosystem. ML-based
techniques have demonstrated promise in classifying abnormal
behaviors and catching zero-day exploits more effectively than
traditional rule-based or signature-based systems.

Yet, the literature also underscores several challenges and
open issues, particularly around real-world feasibility, data
availability and ongoing model adaptation. These challenges
become even more pronounced in an automotive environment
where safety, reliability and regulatory compliance are
non-negotiable. Against this backdrop, the next section of this
paper outlines a proposed architecture for intrusion and malware
detection that leverages machine learning while accommodating
the distinct constraints of Android Automotive.

3. Proposed Architecture
This section details a machine learning (ML)-driven security

framework designed to detect intrusions and malware within
Android Automotive environments. The architecture addresses
key challenges highlighted in the Literature Review, including
real-time data processing, integration with standard automotive
interfaces and resource constraints typical of in-vehicle systems.
By adopting a multi-layered approach, the framework aims to
monitor events and behaviors across all critical touchpoints:
from application-level interactions and network traffic to
low-level ECU communications.

3.1. Architectural principles and requirements

3.1.1. Principle of least privilege: A core tenet of the proposed
framework is the Principle of Least Privilege, which dictates
that each software component or service should only have the
permissions necessary for its function. In Android Automotive,

this extends to system apps, user-installed apps and core operating
system services. By tightly controlling privileges, the surface
area for lateral movement—should an attacker compromise
one module-is greatly reduced. The ML-based detection system
sits atop these partitioned boundaries, gathering data while
respecting sandbox constraints.
3.1.2. Real-time responsiveness: Unlike traditional IT systems,
in-vehicle networks operate under real-time constraints.
Infotainment features, though less safety-critical than engine
or braking control, still demand predictable performance and
swift event handling. Intrusion or malware detection must not
introduce significant latency. Hence, the proposed architecture
incorporates lightweight inference models and prioritizes
efficient data aggregation strategies that minimize overhead on
the head unit’s CPU and memory.

3.1.3. Adaptability and continuous learning

New threats emerge regularly, underscoring the importance
of a security system that can adapt to novel attack vectors. The
proposed architecture supports continuous learning, wherein
the system periodically updates or retrains ML models (e.g., via
secure Over-the-Air updates) to account for new vulnerabilities
and threat intelligence. This approach aligns with modern
automotive development paradigms that emphasize OTA
updates for software-defined vehicles.

3.2. Data collection layer

3.2.1. Sources of security-relevant data: Data for intrusion and
malware detection in Android Automotive can originate from
multiple layers of the operating environment:

a. System logs and kernel events

•	 Low-level logs tracking resource usage, kernel warnings,
SELinux violations and process activity.

•	 Useful for detecting unusual spikes in CPU or memory
usage and unauthorized process escalations.

b. Application-level logs

•	 Logs capturing user app behavior, permission usage, API
calls, crash reports.

•	 Essential for identifying malicious apps masquerading as
benign or legitimate apps with suspicious interactions.

c. Network traffic

•	 Metadata from Wi-Fi, cellular and Bluetooth connections,
including packet counts, destination IPs/domains and
unusual port usage.

•	 Can reveal signs of data exfiltration or remote command-
and-control channels.

d. Vehicle bus data (CAN, Automotive Ethernet)

•	 Messages and signals from ECUs, including diagnostic
codes and sensor readings.

•	 Potentially indicative of injection or replay attacks targeting
in-vehicle networks.

e. OTA update logs

•	 Tracking of firmware downloads, integrity checks and
versioning to spot potential supply chain attacks.

3.2.2. Data aggregation and preprocessing

The diverse nature of these data sources (binary logs, textual

7

Kosamia RI., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

logs, network packets, etc.) necessitates a robust aggregation
strategy. A separate process within the head unit or an integrated
security service, can collect events in near real-time before
filtering and preprocessing them for ML analysis. Typical steps
include:

•	 Time alignment: Synchronizing timestamps from various
sources to enable correlation of events.

•	 Noise reduction: Filtering out irrelevant debug statements,
repetitive messages or known benign anomalies.

•	 Anonymization (Optional): Stripping personally
identifiable information (e.g., user account details, GPS
coordinates) to maintain privacy while still retaining core
security indicators.

Once organized, these processed datasets feed into the next
layer for feature engineering and ML-based classification.

3.3. Feature engineering layer

•	 Domain-specific features: Effective feature engineering
captures relevant signals from raw data, translating them into
structures that machine learning models can interpret. Given
the hybrid nature of Android Automotive (smartphone-like
OS in a vehicular environment), domain-specific features
may include:

°	 Resource usage patterns: CPU load, memory usage and
I/O rates over time, compared against baseline vehicle
usage profiles.

°	 Permission/action correlation: Whether an app’s declared
permissions match its observed behaviors (e.g., a media
player requesting vehicle data privileges).

°	 CAN bus message frequency deviations: Abnormal
frequency or payload content in certain message IDs,
signaling injection or replay attacks.

°	 Network flow fingerprints: Unusual domain requests,
high-frequency bursts of traffic or accessing geolocated IP
addresses known for malicious activity.

°	 System call sequences: Patterns of kernel-level calls made
by apps or processes. Marked deviations may suggest
rootkits or privilege escalation attempts.

Machine learning performance depends heavily on the
quality of these features. Thorough domain analysis helps
narrow down those most indicative of malicious behavior in an
automotive context.

3.4. Feature encoding and normalization: Feature encoding
methods ensure a consistent numeric representation across data
sources. Common techniques include one-hot encoding for
categorical variables (e.g., permission types, process names),
scaling or standardizing continuous variables (e.g., CPU usage,
memory consumption) and binning numeric values when
continuous scales become unwieldy. Proper normalization
prevents certain high-magnitude features (like raw network
byte counts) from overshadowing subtler but equally important
indicators (like unusual message ID usage frequencies).

3.5. Machine learning layer

3.5.1. Model selection criteria: Multiple ML algorithms can
serve as the backbone of the proposed security framework.
The choice depends on factors such as hardware constraints,
complexity of the data and desired interpretability:

•	 Random forest

°° Robust to noise, handles mixed-type features well and
offers relatively straightforward feature importance
metrics.

°° Potentially resource-intensive when ensembles grow
large.

•	 Support vector machines (SVMs)

°° Good for smaller to medium-sized datasets with clear
margins.

°° Can struggle with very high-dimensional data unless
carefully tuned.

•	 Neural networks

°° Convolutional or recurrent architectures can
automatically learn feature representations from logs
or time-series data.

°° May require hardware acceleration (GPU, NPU) for
real-time performance.

•	 Hybrid models (Ensemble Approaches)

°° Combines the strengths of different algorithms to
improve accuracy and reduce false positives.

°	 Example: an anomaly detection autoencoder for
unsupervised learning, followed by a supervised
classifier (e.g., Random Forest) for final decision-
making.

•	 Training and testing methodology

°	 Dataset assembly: Includes labeled benign data and
malicious samples (e.g., known automotive malware,
synthetic intrusions).

°	 Train/validation split: A typical 80/20 or 70/30 split,
with cross-validation to maximize generalization.

°	 Evaluation metrics: Accuracy, precision, recall,
F1-score and sometimes ROC-AUC for binary
classification. Consider false positives cost
(inconvenience, potential safety risk if benign functions
are blocked) vs. false negatives (failing to detect a real
threat).

°	 Incremental / online learning: Supports models to
update with new data over time, key for adapting to
evolving threats (Figure 2).

3.6. Anomaly detection module

3.6.1. Complementing supervised classification: Many
malicious activities do not neatly fit predefined labels, especially
in a rapidly shifting threat landscape. An anomaly detection
module-often an autoencoder or other unsupervised techniques-
can complement supervised classifiers by flagging unusual
patterns that deviate from the learned “normal” baseline. This
is particularly valuable in automotive scenarios where zero-day
attacks might manifest as subtle deviations in CAN traffic or
resource usage.
3.6.2. Autoencoder architecture for CAN data: A common
approach in automotive intrusion detection is to feed time-series
data of CAN messages into an autoencoder. The network learns
to reconstruct typical traffic patterns with minimal error. When
it encounters injected or replayed messages, the reconstruction

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Kosamia RI.,

8

error spikes, signaling a possible intrusion. Similar techniques
can be applied to kernel logs or system calls.

Figure 2: ML Flowchart.

3.7. Decision and response layer

3.7.1. Detection outputs: Upon identifying suspicious activity,
the ML layer produces alerts or confidence scores. For instance,
a classification might label an event as “malicious”, “benign”
or “suspect”. An anomaly detection module may return a
reconstruction error value that exceeds a threshold. This output
triggers the response logic.

3.7.2. Real-Time Mitigation Strategies: Potential response
actions in Android Automotive include:

•	 Quarantine or kill process: Terminate the suspected
process or isolate it in a restricted environment.

•	 Alert user or OEM: Notify the driver via the infotainment
screen or send event data to a back-end server for further
analysis.

•	 Network isolation: Restrict external communication
temporarily if a large data exfiltration attempt is suspected.

•	 ECU-level safeguards: If a critical ECU is under suspected
attack, the system can block incoming requests or initiate a
safe mode until human intervention.

Careful tuning of response policies is crucial-overly
aggressive reactions might degrade user experience or lead to
safety concerns if legitimate processes are disrupted.

3.8. Continuous learning and OTA updates

3.8.1. Fleet-wide intelligence: Automakers increasingly use
connected vehicle platforms to gather anonymized telemetry
from a fleet of vehicles. The proposed architecture can leverage
this approach by centrally aggregating suspicious event logs or
confirmed attack data. Updated ML models-trained offline on
richer, consolidated datasets-can then be securely pushed back to
vehicles via OTA updates. This fleet-wide learning mechanism
ensures that each car benefits from insights discovered elsewhere.
3.8.2. Secure delivery of updates: Because model updates
themselves could be a target for adversaries, secure OTA protocols
must be enforced. This includes signing and encrypting the
updated models, verifying digital signatures on the head unit and
ensuring rollback mechanisms exist if an update is found to be
corrupted. A robust key management infrastructure, potentially
with hardware security modules (HSMs), is recommended to
protect the entire update lifecycle.

3.9. Architectural resilience and limitations

•	 Defending against adversarial attacks: ML models are
susceptible to adversarial manipulations. Attackers might
craft malicious inputs that bypass anomaly detection or
inject mislabeled data into the training pipeline. Mitigation
strategies include robust training (e.g., adversarial training

•	 Resource constraints: Although modern head units are
more powerful than ever, not all vehicles can host large
neural networks without noticeable performance impacts.
Techniques such as model compression (quantization,
pruning), on-demand inference or offloading computations
to a dedicated AI accelerator can help balance detection
efficacy with runtime constraints.

3.10. Summary of proposed architecture

The proposed ML-based security framework:

a.	 Collects and Aggregates automotive-specific data from
multiple sources (system logs, app logs, network flows,
ECU signals).

b.	 Transforms raw data into discriminative features that
capture contextual signals relevant to automotive security.

c.	 Classifies and Detects Anomalies using supervised and
unsupervised ML algorithms, each tailored to specific threat
types.

d.	 Responds to detected intrusions or malware attempts
by quarantining processes, alerting the user or OEM and
logging events for further analysis.

e.	 Learns Continuously through a secure OTA update system,
enabling adaptation to emerging threats and zero-day
exploits.

This multi-layered approach aims to provide a robust
shield against unauthorized access, malware infiltration and
abnormal patterns indicative of a breach. In the next section, an
implementation and testing overview will showcase how this
architecture can be realized in practice, including performance
metrics and resource overhead evaluations.

4. Implementation and Results
This section describes the implementation of the proposed

machine learning (ML)-based security framework in an Android
Automotive context, including the setup used for evaluation,
the dataset composition, the model training and tuning process
and the resulting detection performance. By detailing each step
of the pipeline—from data collection to real-time inference-
this section aims to illustrate how the conceptual architecture
can be realized on actual in-vehicle or lab-based hardware.
Practical considerations such as resource utilization, latency and
integration challenges are also examined.

4.1. Experimental setup

4.1.1. Hardware environment: A representative Android
Automotive head unit or development board was employed to
replicate realistic in-vehicle conditions. The chosen platform
included:

°° System on Chip (SoC) with multi-core CPU and limited
GPU acceleration.

°° 4–8 GB of RAM to simulate mid-range to high-end
infotainment hardware.

9

Kosamia RI., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

°° Automotive-Grade Peripherals (CAN bus interface,
simulated sensor inputs, Wi-Fi/Bluetooth connectivity).

Though this environment may not reflect every OEM’s
hardware configuration, it approximates typical constraints in
terms of compute capacity and memory availability. Some tests
also incorporated external sensor simulators or hardware-in-the-
loop setups to feed CAN messages to the head unit.

4.1.2. Software stack

•	 Android Automotive OS (custom build based on an open-
source release), configured with standard IVI functionalities
(navigation, media, vehicle services).

•	 Logging Services to capture kernel logs, system logs and
application logs in near real-time.

•	 Network Monitoring Tools integrated at the OS level to
record network flows (destination IP, packet volume, port
usage).

•	 CAN Traffic Simulator or real automotive bus for injection
of benign vs. malicious messages.

•	 ML Framework (e.g., TensorFlow Lite, PyTorch Mobile
or a similar lightweight library) deployed for on-device
inference.

4.2. Dataset composition

4.2.1. Benign Data Collection: To model normal operating
conditions, benign data was recorded under various scenarios:

•	 Typical infotainment usage

°° Streaming audio or video, interacting with navigation apps,
adjusting climate controls.

•	 User interaction patterns

°° Installing legitimate apps from approved sources, connecting
smartphones via Bluetooth, receiving typical OTA updates.

•	 In-vehicle sensor activity

°° Regular CAN bus traffic, including acceleration, braking,
engine RPM signals where applicable.

This data spanned multiple driving conditions (city vs.
highway simulation), ensuring broad coverage of normal
behavioral variations.

4.2.4. Malicious and Intrusive Data

To train and evaluate the detection models, malicious samples
were collected or generated to reflect real-world attack vectors:

•	 Malicious apps

°° APKs embedding known malware strains targeting Android
devices4.

°° Trojans disguised as benign infotainment apps requesting
excessive vehicle-related permissions.

•	 Network-based attacks

°° Simulated remote intrusions via open ports, rogue Wi-Fi
access points or crafted Bluetooth packets.

°° Command-and-control traffic patterns for data exfiltration.

•	 CAN injection attacks

°° Replay or injection of falsified CAN messages mimicking
potential adversaries trying to disrupt vehicle functions5.

•	 Privilege escalation attempts

°° Exploiting known Android vulnerabilities in older OS
versions or purposely leaving debug modes active.

Each malicious scenario was carefully labeled to facilitate
supervised learning. In the case of anomaly detection modules,
these labels helped validate reconstruction error thresholds or
unsupervised clustering results.

4.3. Data preprocessing and feature engineering

•	 Logging and parsing: System logs were unified into a
central repository, with each entry tagged by a timestamp
and source identifier (e.g., kernel, network, CAN bus,
application). Network traffic information was represented
at a flow level, capturing packet counts and intervals.
Meanwhile, CAN bus data was parsed to extract message
IDs, payloads and send rates.

4.3.1. Feature extraction

Building on the principles in the proposed architecture, the
following features were engineered:

•	 Resource usage indicators: Rolling averages of CPU load,
memory utilization and I/O operations per second per app
process.

•	 Permission utilization patterns: Binary flags indicating
whether an app invoked vehicle-related APIs (e.g., reading
cabin temperature sensors).

•	 CAN frequency deviations: Statistical descriptors (mean,
variance, outliers) of CAN message frequencies for key IDs.

•	 Network statistics: Packet sizes, domain name frequency,
unusual port usage, spike detection for data uploads.

•	 Sequential system call profiles: Aggregation of call types
invoked by an app or system process over time.

•	 Temporal aggregation: Rolling or exponential moving
windows to capture short-term vs. long-term deviations.

Feature scaling (e.g., min-max normalization) and encoding
(one-hot encoding for categorical data such as process names)
ensured consistency across the dataset. Where possible, irrelevant
or redundant features were pruned to reduce dimensionality.

4.4. Model development and training

4.4.1. Selected ML Algorithms: Several classification and
anomaly detection algorithms were tested:

•	 Random Forest (RF): Well-suited for tabular data and
offers interpretability via feature importance measures.

•	 Support Vector Machine (SVM): Explored for binary
classification tasks, especially effective in smaller feature
sets.

•	 Autoencoder for Anomaly Detection: Learns
reconstruction of benign traffic or system events, flagging
high reconstruction error for malicious patterns4.

•	 Hybrid Ensemble: A pipeline approach where an
autoencoder first flags anomaly. Subsequently, flagged data
is passed to an RF or SVM classifier for a final verdict.

4.4.2. Training and validation process

A typical split of 70% training, 20% validation and 10%
testing was employed. Each model underwent hyperparameter
tuning (e.g., depth of trees for RF, kernel type and regularization

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Kosamia RI.,

10

for SVM, number of latent dimensions for autoencoders).
Techniques such as cross-validation helped mitigate overfitting
in smaller malicious subsets.

•	 Batch training: Conducted offline using a combination of
local computing resources and, where available, a dedicated
GPU for accelerated deep learning.

•	 Model quantization: Where necessary, neural network
models were quantized (e.g., 8-bit integer format) to fit real-
time constraints in the head unit environment.

Figure 3: Model Training Workflow.

4.5. Evaluation Metrics

4.5.1. Accuracy, precision and recall: Accuracy captures the
proportion of correct classifications overall. Precision measures
how many flagged alerts are actually malicious and recall
gauges how many of the total malicious instances are correctly
identified. In an automotive context, a balanced approach is
desirable-high precision reduces false alarms that might disrupt
user experience, while high recall ensures genuine threats are
not missed.
4.5.2. F1-score and AUC: The F1-score provides a harmonic
mean of precision and recall, offering a single metric to evaluate
model effectiveness, especially for imbalanced datasets. For
binary classification (e.g., malicious vs. benign), ROC curves
and the Area Under the Curve (AUC) help visualize trade-offs
between true positive rate and false positive rate.

4.5.3. Real-time performance and resource overheads

Beyond detection quality, two additional metrics are crucial:

•	 Inference latency: The time the model takes to process a
batch of new events. Excessive latency can undermine real-
time responsiveness.

•	 Resource usage: CPU and memory consumption, which
affects overall infotainment performance and driver
experience. Models requiring minimal overhead are
generally preferable for in-vehicle deployment.

4.6. Experimental results

4.6.1. Detection performance: In preliminary testing, Random
Forest and autoencoder-based anomaly detection performed
strongly in identifying malicious traffic and apps:

°° Random Forest
°° Accuracy often exceeded 95% on balanced test sets.
°° Achieved a high precision (~92%) and recall (~90%),

indicating robust identification of malicious scenarios with
relatively few false positives.

°° SVM
°° Performed well on smaller feature subsets, but scaling to

larger dimensional spaces required extensive tuning.
°° Often matched RF in accuracy but lagged in inference speed

due to computational overhead.
°° Autoencoder
°° Proved particularly effective at spotting injected CAN

traffic. Reconstruction errors spiked for replayed messages
that deviated from normal distribution patterns.

°° Minimal false alarms once the model was trained on a
sufficiently diverse benign dataset.

When combined in a hybrid ensemble, anomaly detection
complemented the supervised classifier. Suspicious samples
were flagged by the autoencoder, then scrutinized by the RF
classifier, resulting in improved precision (reducing false
positives for innocuous anomalies).

Latency and resource overheads

Measurements on the target infotainment hardware indicated:

•	 Random Forest required moderate CPU resources,
processing events with an average inference latency under
50 ms per batch of 100 events.

•	 SVM proved more computationally expensive, with
inference latency occasionally spiking to over 100 ms in
high-load scenarios.

•	 Autoencoder inference was relatively lightweight once
quantized, often running under 30–40 ms per batch.
However, training the autoencoder, if done on-device,
was more demanding and typically deferred to offline or
incremental learning sessions.

•	 Hybrid Ensemble introduced a small latency overhead
(~10–15% increase) but offered the best overall detection
performance.

•	 While all models could technically operate in real-time,
resource usage patterns varied. Monitoring CPU usage
during test scenarios showed that the autoencoder generally
had the smallest footprint, while large random forest
ensembles or SVMs required careful optimization.

4.7. Integration challenges and observations

•	 Logging overhead: Capturing high-volume data (system
logs, network packets, CAN messages) can impact system

11

Kosamia RI., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

performance. Well-structured sampling and adaptive logging
are necessary to avoid burdening the CPU or storage.

•	 Label quality: Constructing a high-fidelity malicious
dataset remains a bottleneck, as genuine vehicle-targeted
malware samples are scarce or proprietary. Collaborating
with OEMs and cybersecurity communities could enrich
training corpora.

•	 Driver experience: Security measures must remain invisible
to the driver under normal conditions. False positives that
terminate legitimate apps (e.g., navigation) can erode trust
in the system.

•	 OTA Security: Delivering model updates securely is
essential. In controlled experiments, a robust certificate-
based signing process mitigated the risk of tampered ML
models reaching vehicles.

Despite these challenges, the experimental results suggest
that an ML-based detection framework is both feasible and
effective for identifying malicious activities in Android
Automotive scenarios.

4.8. Summary of findings

The implementation and testing demonstrated that ML
algorithms-especially random forests and autoencoder-based
anomaly detection-achieve strong detection metrics for a range
of attack vectors. The hybrid approach balances the advantages of
unsupervised anomaly detection with the precision of supervised
classification. Moreover, careful feature engineering tailored to
automotive-specific signals (e.g., CAN patterns, vehicle-focused
permissions) proved instrumental in elevating performance.

Real-time constraints and resource utilization are manageable
on mid-range infotainment hardware, with quantization and
pruning techniques further optimizing deep learning models.
While certain practical hurdles (dataset availability, OTA security,
false-positive management) remain, the proposed framework
aligns with industry moves toward greater connectivity and
software-defined features in vehicles, underlining the potential
for widespread adoption.

5. Discussion and Future Work
Having demonstrated the feasibility and effectiveness of a

machine learning (ML)-based security framework for Android
Automotive, this section discusses broader implications,
limitations and potential avenues for further refinement.
While the results underscore the promise of data-driven threat
detection, real-world deployment calls for careful balancing
of performance, reliability, user experience and regulatory
compliance. Building on the insights gained, we outline how
future research can address emerging challenges and capitalize
on advanced ML paradigms to bolster automotive cybersecurity.

5.1. Addressing limitations of the current approach

•	 Data scarcity and labeling: The efficacy of supervised
or semi-supervised ML models depends heavily on the
quantity and quality of labeled data. In the automotive
sector, obtaining real malicious samples is challenging.
OEMs and security researchers often maintain proprietary
datasets, limiting public availability for reproducible
research4. Meanwhile, simulated attacks may not always
represent the full sophistication of real-world adversaries.

To mitigate this issue, broader industry collaboration
and data-sharing initiatives could be fostered, perhaps under
consortia where anonymized threat intelligence is pooled. This
would help researchers and practitioners build richer, more
comprehensive datasets. Additionally, synthetic data generation
techniques-including simulation of different driving conditions
and custom malicious scenarios-could be refined to better
approximate real-world threats9.

•	 False positives and user experience: High detection rates
lose their value if users experience frequent false alarms
that disrupt legitimate functions like navigation or media
playback. Such incidents can erode trust in the vehicle’s
infotainment system. Although the Random Forest and
autoencoder models tested show promising precision and
recall, occasional false positives are inevitable, particularly
during “edge” usage scenarios (e.g., rapidly switching apps,
high concurrency).

Balancing sensitivity and specificity is crucial. Techniques
like dynamic thresholding-adjusting detection thresholds based
on context (e.g., type of network connection, user driving mode)-
may reduce benign anomalies being flagged. Another approach
is a secondary confirmation mechanism: the system first tags
an event as suspicious, then silently gathers additional data to
confirm or dismiss the threat before taking disruptive action5.

•	 On-device resource constraints: Despite improvements
in infotainment hardware, computational resources remain
finite. Larger models or deep neural networks can strain
the CPU/GPU, especially when simultaneously running
resource-intensive apps (navigation, streaming). The results
showed that some algorithms, particularly SVMs with
complex kernels, can exhibit latency spikes under heavy
loads.

Ongoing optimizations like quantization, pruning or
distillation of deep networks can improve inference speed while
retaining detection accuracy. Adopting a modular approach-
where heavier computations (e.g., retraining) occur offline or
in the cloud-can further minimize real-time resource usage on
the head unit2. Hybrid architectures that reserve lightweight,
on-device anomaly detection for immediate response and
periodically upload suspicious logs for deeper offline analysis
could strike an optimal balance.

5.2. Interpretability and regulatory considerations

5.2.1. Explainability for automotive stakeholders: Complex
ML models, particularly deep neural networks, often operate as
“black boxes,” making it difficult for engineers or auditors to
interpret how decisions are made. In an automotive environment,
the need for explainability rises significantly due to regulatory
and safety imperatives9. Regulators or OEM safety boards may
demand a clear rationale for why a particular process was flagged
as malicious, especially if it impacts critical vehicle functions.

Various techniques aim to improve ML interpretability-
ranging from Shapley values to local interpretable model-
agnostic explanations (LIME). Implementing such methods
could reveal which features (e.g., abnormal CAN frequencies,
suspicious API calls) triggered a detection event4. More
transparent models foster greater trust among manufacturers,
fleet operators and end-users, ensuring the intrusion detection
system meets evolving automotive compliance standards.

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Kosamia RI.,

12

5.2.2. Alignment with automotive standards: Several
regulatory frameworks and industry standards (such as ISO/
SAE 21434 and UNECE WP.29) emphasize the necessity of
cybersecurity risk management throughout the vehicle lifecycle
[1]. While these standards do not prescribe specific technical
solutions, they strongly encourage continuous monitoring,
incident detection and prompt mitigation strategies. Machine
learning-based detection addresses these directives by providing
adaptive, data-driven coverage against newly emerging threats.

Future iterations of automotive regulations may set guidelines
for how in-vehicle ML models should be validated, documented
and tested. Proactive engagement with standardization bodies
will be key to ensuring the proposed framework remains
compliant. For instance, verifying an ML model’s performance
under various real-world scenarios-highway driving, urban
traffic, extreme temperatures—could become part of the
certification process.

5.3. Potential future enhancements

5.3.1. Federated learning for fleet-wide security: Federated
learning has gained traction in fields like mobile device security,
where privacy constraints limit centralized data sharing. In an
automotive context, thousands of vehicles could cooperatively
train or improve intrusion detection models without transmitting
raw data to OEM servers8. Each vehicle locally updates a model
with its unique usage patterns and shares only the model weights
or gradients, preserving occupant privacy.

Such an approach could accelerate the identification of
novel attacks, as anomalies observed in one vehicle might later
appear in another. However, implementing federated learning
in production requires robust mechanisms for synchronization,
secure aggregation and model version control. Adversaries
could also attempt “model poisoning,” making robust anomaly
detection of outlier updates a prerequisite for widespread
deployment.

5.3.2. Transfer learning and domain adaptation: Depending
on vehicle segments (economy, luxury, commercial fleets) and
geographical regions, usage patterns may vary widely. A single
global model might not generalize well to all environments.
Transfer learning or domain adaptation methods could allow
base models-trained on aggregated data from multiple contexts-
to be fine-tuned with a smaller set of region- or vehicle-specific
data2.

In practice, if an OEM releases a new vehicle model with
slightly different infotainment features or sensor configurations,
the base detection model could be adapted rather than retrained
from scratch. This incremental approach speeds up development
cycles and fosters consistent security coverage across diverse
product lines.

5.3.3. Reinforcement learning for adaptive responses

While supervised or unsupervised approaches excel at
detection, deciding on the optimal response in real time remains
an open challenge. Overly aggressive responses risk user
frustration; insufficient responses may allow attacks to continue.
Reinforcement learning (RL) could dynamically learn the best
response strategy by maximizing certain reward signals (e.g.,
minimizing system disruptions while effectively neutralizing
threats)4.

For instance, an RL agent might adjust detection thresholds
in real time based on driver usage patterns, network stability
or historical false alarms. Although RL poses additional
complexities-exploration vs. exploitation trade-offs, safe policy
updates in a safety-critical system-it presents an intriguing
avenue to refine intrusion detection beyond static response rules.

5.4. Emerging threats and research directions

5.4.1. Integration with advanced driver-assistance systems
(ADAS): As cars incorporate more advanced driver-assistance
features, the infotainment platform may exchange critical data
with ADAS modules. Intrusions in the infotainment domain
could potentially escalate to safety-critical functions (e.g., lane-
keeping, adaptive cruise control). Future research should expand
detection coverage to include sensor fusion data (e.g., LiDAR,
radar) and ADAS logs, ensuring anomalies in these streams are
also recognized.
5.4.2. Hardware trojan and supply chain attacks: Sophisticated
adversaries might compromise hardware components during
manufacturing or the supply chain. Detecting hardware trojans
or tampered ECUs typically goes beyond software-based
approaches. However, anomaly detection systems can still pick
up abnormal device behavior once such modifications are active.
Collaborative efforts between hardware security researchers and
ML-based software detection are pivotal for a holistic approach
to vehicle security3.
5.4.3. Privacy-preserving analytics: Consumer data within
Android Automotive can include personal preferences,
location history and multimedia usage. ML-driven solutions
must handle this data responsibly to avoid violating privacy
regulations or user trust. Methods like differential privacy and
secure multiparty computation may facilitate robust analytics
while safeguarding sensitive information9. Ongoing work in
privacy-preserving machine learning will likely converge with
automotive cybersecurity needs.

5.5. Practical recommendations for OEMs and suppliers

•	 Phased deployment: Roll out ML-based detection
incrementally, starting with passive monitoring and
alerting to gauge false-positive rates before enacting active
mitigation.

•	 Cross-functional teams: Collaborate among software
developers, data scientists, vehicle system engineers and
security experts for a comprehensive threat modeling
approach.

•	 Regular model updates: Establish secure Over-the-Air
channels for continuous improvement of detection models,
ensuring they keep pace with emerging threats.

•	 Clear escalation paths: Implement well-defined protocols
for how high-severity alerts are handled-both locally
(e.g., restricting network access) and remotely (e.g., OEM
security center analysis).

•	 Test against edge cases: Evaluate detection models in
unusual driving and usage conditions, including extreme
temperatures, intermittent connectivity or user behavior
anomalies.

5.6. Summary of key insights and future outlook

The ML-based intrusion and malware detection framework
outlined in this paper demonstrates strong potential to enhance

13

Kosamia RI., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

the security posture of Android Automotive systems. By
leveraging robust feature engineering, supervised classification
and anomaly detection, vehicles can proactively identify and
neutralize malicious activities. Yet, as connected cars evolve
toward more sophisticated, software-centric architectures,
ongoing research and iterative development are paramount.

Key discussion points include the need for improved data
access, advanced interpretability, resource optimization and
alignment with emerging regulations. The horizon of future
work extends into federated learning, reinforcement learning for
adaptive responses and deeper integration with ADAS modules—
each promising to deepen the effectiveness and resilience of
in-vehicle security. Through continued collaboration among
OEMs, suppliers, researchers and regulatory bodies, the industry
can realize a safer, more robust ecosystem that keeps pace with
the ever-evolving cyber threat landscape.

6. Conclusion
This final section synthesizes the core arguments, findings

and contributions presented throughout the paper, emphasizing
the importance of machine learning (ML) in strengthening
Android Automotive security. By uniting academic insights
with practical experimentation, we have illustrated how an
ML-centric framework can bolster intrusion and malware
detection to meet the demanding requirements of modern
connected vehicles. The conclusion also reiterates the broader
implications for industry stakeholders, regulatory bodies and
the research community, while outlining potential paths to
ensure that future implementations remain robust, adaptable and
aligned with evolving cyber threats.

6.1. Revisiting the objectives and contributions

The primary objective of this paper was to examine how a
machine learning approach could be applied to intrusion and
malware detection in Android Automotive-an operating system
that merges the convenience of smartphone-like apps with
in-vehicle functionalities. We set out to:

•	 Highlight security challenges in android automotive –
We delineated the expanded attack surface resulting from
deeper integration of infotainment systems with vehicle
networks and the internet. Android’s extensibility, while
beneficial for user experience, also opens new vectors for
exploitation by malicious actors.

•	 Review the state of automotive cybersecurity – A
structured Literature Review underscored existing work
on automotive intrusion detection systems (IDS) android
malware detection and the growing role of ML in tackling
both known and zero-day threats.

•	 Propose an ML-based architecture – We outlined a
multi-layered detection framework that aggregates logs
from system-level processes, network traffic and in-vehicle
signals, feeding these into sophisticated ML models. By
blending supervised classification with anomaly detection,
the architecture aims to achieve strong accuracy, adaptability
and low false positives.

•	 Demonstrate practical feasibility – Implementation details
and experimental results were shared, confirming that
on-device ML is viable for real-time detection within typical
resource constraints. The tests revealed high detection rates,
manageable inference latency and clear trade-offs among
different algorithms (Random Forest, SVM, autoencoders,
etc.).

•	 Discuss broader implications and future work – We
acknowledged existing hurdles, including data scarcity,
explainability and the risk of adversarial manipulation.
Potential solutions-federated learning, reinforcement-driven
adaptive responses, domain adaptation-were discussed as
promising next steps.

By achieving these aims, the paper contributes a holistic
blueprint for integrating ML-based security solutions into
Android Automotive, offering insights for OEMs, Tier 1
suppliers and software developers seeking to safeguard
connected vehicles.

6.2. Key insights from each phase of the research

•	 Security demands in the automotive landscape: Android
Automotive transforms a vehicle’s head unit into a full-
fledged computing environment with deep integration
into in-vehicle networks. This shift necessitates security
measures beyond traditional automotive firewalls and
mechanical anti-tampering. Our exploration shows how
these demands are amplified by:

°° Connectivity Expansions: Wi-Fi hotspots, cellular
modems, Bluetooth links, OTA update channels.

°° User-Centric Apps: Drivers now expect an app
ecosystem akin to smartphones, expanding the potential
for malicious or trojaned applications.

°° Cross-Domain Impact: Compromises in the
infotainment domain can escalate to safety-critical
ECUs if insufficient isolation is in place.

Our findings confirm that static or signature-based security
methods alone fall short in detecting modern, adaptive attacks.
A pivot toward intelligent, data-driven monitoring is both timely
and necessary.

6.1. Literature review and theoretical foundations

The Literature Review identified parallels with existing work in:

•	 Automotive IDS: Characterized by CAN bus anomaly
detection, specification-based checks and (increasingly)
ML-based approaches.

•	 Android malware analysis: Built around static/dynamic
analysis, permission scrutiny and advanced classifiers to
identify rogue apps.

By merging the two domains-automotive security and
Android security—this paper provides a conceptual bridge,
illustrating that proven techniques from smartphone malware
detection can be adapted for a vehicle environment. At the same

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Kosamia RI.,

14

time, vehicle-specific nuances (real-time constraints, embedded
hardware limitations, CAN/Ethernet data) require bespoke
solutions. Hence, the impetus for a combined architecture that
benefits from the best of both fields.

6.2.3. Proposed architecture

The Literature Review identified parallels with existing work in:

•	 Automotive IDS: Characterized by CAN bus anomaly
detection, specification-based checks and (increasingly)
ML-based approaches.

•	 Android malware analysis: Built around static/dynamic
analysis, permission scrutiny and advanced classifiers to
identify rogue apps.

By merging the two domains-automotive security and
Android security—this paper provides a conceptual bridge,
illustrating that proven techniques from smartphone malware
detection can be adapted for a vehicle environment. At the same
time, vehicle-specific nuances (real-time constraints, embedded
hardware limitations, CAN/Ethernet data) require bespoke
solutions. Hence, the impetus for a combined architecture that
benefits from the best of both fields.

6.3. Implementation and empirical results

Our practical experiments substantiated the efficacy of ML-based
intrusion and malware detection. Notably:

•	 High detection rates: Precision and recall scores often
exceeded 90%, with autoencoders showing strong aptitude
in spotting manipulations in network and bus-level data.

•	 Manageable resource footprint: While resource usage
varied, optimized or quantized models ran within real-time
constraints on typical infotainment hardware.

•	 False positives vs. real-world integration: Findings
reinforce that calibration is essential to minimize user
disruption. A layered approach-initial anomaly tagging
followed by secondary classification-proved effective in
reducing false alarms.

Given these empirical insights, we conclude that ML-based
detection strategies are not only theoretically sound but also
feasible for near-term deployment in production vehicles,
pending careful engineering and validation.

6.4. Broader implications for industry and policy

Aligning with automotive cybersecurity standards:
Emerging regulatory frameworks, such as ISO/SAE 21434
and the UNECE WP.29, promote continuous risk assessment,
event monitoring and swift threat response. By incorporating an
ML-based IDS as a core pillar of their cybersecurity strategy,
OEMs can proactively address these mandates. The adaptive
nature of ML—detecting unknown or zero-day attacks—reflects
well on recommended guidelines that stress ongoing vigilance
rather than static compliance checklists1,2.

Enhancing consumer trust: As vehicles become more
sophisticated, consumers may grow wary of the potential privacy
and security risks. Demonstrable, reliable threat detection can
reassure drivers that their personal data (contacts, media) and
vehicle systems (steering, braking) are shielded from malicious
tampering. Consequently, adopting these technologies could
become a market differentiator for OEMs, positioning them as
leaders in secure, software-defined vehicles.

Future-proofing through collaborative ecosystems: The
concept of fleet-wide learning—where data or model updates
are aggregated across thousands of vehicles-promises a self-
reinforcing security ecosystem. However, achieving such
large-scale collaboration requires robust privacy frameworks,
standardization of data formats and shared threat intelligence
protocols among industry players. Initiatives like the Auto-ISAC
(Information Sharing and Analysis Center) could facilitate these
exchanges, ensuring that new threats uncovered in one region or
brand inform the security posture of others9.

Figure 6: Lifecycle of ML based Detection Framework.

6.5. Reflecting on challenges and limitations

Despite encouraging results, several constraints must be
acknowledged:

•	 Data availability: Genuine malicious automotive datasets
remain scarce or proprietary, complicating the development
of universally validated models.

•	 Adversarial resilience: Attackers can attempt to manipulate
inputs to evade ML detection or corrupt training pipelines.
Future research should focus on adversarial training
techniques and robust data validation.

•	 Explainability: Deep ML models can lack transparency.
Regulatory bodies and OEMs may demand clear explanations
for why certain apps or processes were flagged. Building
interpretability mechanisms into the detection pipeline will
be crucial.

•	 Deployment complexity: Integrating an ML-based IDS
into a production vehicle’s software stack involves careful
orchestration with existing real-time systems. Minor
misconfigurations might introduce latencies or hamper
user-facing functionalities like media playback, navigation
or telematics.

These limitations underscore that robust cybersecurity is an
iterative endeavor, requiring ongoing research, cross-disciplinary
collaboration and iterative deployment strategies.

C. Pathways for future evolution

•	 Advanced ML techniques

°	 Federated learning: Encourages distributed training
across a fleet of vehicles without centralizing user data.
This could accelerate detection of emergent threats

15

Kosamia RI., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

while respecting occupant privacy constraints8.
°	 Reinforcement learning: Goes beyond detection to

dynamically adjust threat response policies, balancing
intrusion mitigation with minimal user disruption4.

°	 Transfer and domain adaptation: Allows global
“base models” to be refined for specific vehicle models
or geographies, acknowledging that usage patterns vary
significantly among different demographics2.

6.4. Integration with ADAS/autonomous systems

As advanced driver-assistance systems (ADAS) and
autonomous features proliferate, cybersecurity must extend
beyond infotainment. Threats to sensors (LiDAR, radar), vision
processing units or drive-by-wire controls pose higher stakes.
Future work can incorporate real-time sensor fusion data into
an IDS framework, enabling the system to detect anomalies
in environmental perception that might result from malicious
tampering.

6.6. Expansion to electric and connected ecosystems

Electric vehicles (EVs) rely heavily on software-defined
powertrain controls and robust battery management systems.
IoT-like connectivity to charging stations introduces additional
surfaces for potential compromise. A unified ML-based security
solution could also encompass communications with smart grid
infrastructure, opening new avenues for research into secure
charging protocols, load balancing and energy management3,5.

6.7. Recommendations for stakeholders

•	 OEMs and Tier 1 suppliers

°° Invest in building cross-functional teams that integrate
cybersecurity professionals, AI/ML specialists and
automotive engineers.

°° Encourage ecosystem-wide threat intelligence sharing to
stay ahead of rapidly evolving exploits.

°° Plan for multi-year lifecycle support, ensuring ML models
can be updated securely to handle new attack vectors.

•	 Security researchers and academics

°° Focus on creating open-source datasets and benchmarks to
spur reproducible research.

°° Explore adversarial ML defenses and robust training
approaches tailored to automotive data structures.

°° Collaborate with regulatory bodies to define best practices
for validating ML-based security systems in vehicles.

•	 Regulatory and standards organizations

°° Consider guidelines that recognize the value of machine
learning in threat detection but also address transparency,
testing methodologies and post-deployment monitoring.

°° Encourage standardized data formats and logging schemas,
enabling broader adoption of ML-based solutions across
different OEMs and models.

•	 End users (Drivers)

°° Demand vehicles that demonstrate clear security
measures and reputable OTA update practices.

°° Remain vigilant about installing only vetted apps,
avoiding questionable third-party sources that could
harbor malware.

B. Vision for a secure, software-driven future

Software-defined vehicles (SDVs) herald an era where
infotainment systems, telematics and ADAS features converge
into a unified digital ecosystem. ML-driven security architectures,
such as the one advanced in this paper, will be instrumental in
mitigating cyber risks in this interconnected context. The ability
to detect anomalies, adapt to new threats and coordinate defense
strategies across large fleets transforms cybersecurity from a
reactive process into a continuously evolving safeguard.

Long-term, we anticipate that in-vehicle ML will extend
beyond intrusion detection to broader predictive maintenance,
driver behavior analysis and even cooperative safety measures
in connected traffic ecosystems. In this vision, each vehicle not
only protects itself but also shares crucial intel with the wider
network of cars and infrastructure, creating a self-improving,
collective security posture. Such synergy demands ongoing
dialogue between software developers, OEMs, researchers and
policymakers to ensure technology evolves responsibly and
inclusively.

6.8. Concluding remarks

This paper has argued that machine learning-with its capacity
to analyze rich, high-dimensional data—provides a powerful
defense against the intricate, evolving threats faced by Android
Automotive. The fusion of automotive security insights with
advanced ML techniques represents not just an incremental
improvement, but a paradigm shift from static or signature-
centric defenses to proactive, adaptive protection.

In closing, our research and implementation results affirm
that ML-based solutions can effectively identify and neutralize
threats, provided they are carefully engineered for automotive
resource constraints, real-time responsiveness and lifecycle
longevity. By maintaining this synergy, the industry can meet
regulatory expectations, reassure consumers and ultimately pave
the way for safer, more secure connected vehicles.

The road ahead involves deepening these capabilities, refining
models against adversarial attacks and continually integrating
fresh data from fleets worldwide. Through collaborative effort
across the automotive and cybersecurity landscapes, the promise
of robust, ML-driven security for Android Automotive stands
both realizable and essential.

7. References

1.	 International Organization for Standardization (ISO) and
Society of Automotive Engineers (SAE), ISO/SAE 21434: Road
Vehicles-Cybersecurity Engineering, 2021

2.	 Tole T. Securing the Car: Evolving Standards for Automotive
Cybersecurity. IEEE Trans Veh Tech, 2021;69: 1212-1223.

3.	 Checkoway S, et al. Comprehensive Experimental Analyses of
Automotive Attack Surfaces. in Proc. USENIX Security, 2011:
77-92.

4.	 Kayacik HG, Onut I, Zhang J. Machine Learning for Intrusion
Detection: A Systematic Review. IEEE Access, 2020;8: 76029-
76053.

5.	 Groza B, Murvay P. Security Solutions for the Controller Area
Network: Bringing Authentication to In-Vehicle Networks. IEEE
Veh Tech Mag, 2018;13: 40-47.

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Kosamia RI.,

16

6.	 Zhao Y. Automotive Intrusion Detection Systems: A Survey.
IEEE Access, 2019;7: 164690-164704.

7.	 Zhang T, Sun W, Trappe W. Enhancing Security of Wireless
Localization With Machine Learning. IEEE Commun. Surv Tuts,
2019;21: 2132-2158.

8.	 Feng X, Wang H, Ye L. Deep Learning for Android Malware
Detection. in Proc. IEEE Conf. on Communications and Network
Security (CNS), 2018: 1-9.

9.	 Asjed EO. Performance Analysis of ML-based Intrusion
Detection in Android Ecosystems. IEEE Access, 2020;8: 21432-
21445.

10.	 Yagci O. Challenges in Real-Time Intrusion Detection for Cyber-
Physical Systems. in Proc. IEEE Int. Conf. on Dependable,
Autonomic and Secure Computing, 2022: 205-214.

	_bcr0lp7dj9bb
	_7agtsgfgw2bh
	_zcxyoj04stc

