ISSN: 2583-9888 ({’)/URF PUBLISHERS

DOI: doi.org/10.51219/JAIMLD/azrajabeen-mohamed-ali/411 = connect with research world

Journal of Artificial Intelligence, Machine Learning and Data Science

https://urfpublishers.com/journal/artificial-intelligence

Vol: 1 & Iss: 1 Research Article

The Power of Cryptography: Hashing and Encryption for Data Protection

Azra Jabeen Mohamed Ali*
Independent Researcher, California, USA

Citation: Ali AZM. The Power of Cryptography: Hashing and Encryption for Data Protection.] Artif Intell Mach Learn ¢ Data
Sci 2023, 1(1), 1857-1861. DOI: doi.org/10.51219/JAIMLD/azrajabeen-mohamed-ali/411

Received: 02 February, 2023; Accepted: 18 February, 2023; Published: 20 February, 2023
*Corresponding author: AzraJabeen Mohamed Ali, Independent researcher, California, USA, E-mail: Azra.jbn@gmail.com

Copyright: © 2023 Ali AZM., Postman for API Testing: A Comprehensive Guide for QA Testers., This is an open-access article
distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited.

ABSTRACT

This paper explores the foundational techniques of hashing and encryption, which are essential for ensuring data protection
and integrity in various applications, from secure communications to safeguarding stored data. In today’s digital age, securing
sensitive information is paramount and cryptography plays a critical role in achieving this goal. Hashing is used to convert input
data into fixed-size hashes, providing a way to verify data integrity without exposing the original data, while encryption ensures
that information is transformed into unreadable formats, only accessible by authorized parties. Through a detailed examination
of popular cryptographic algorithms, such as SHA-256 for hashing and AES for encryption, the paper highlights how these
methods are applied in real-world scenarios to protect privacy, prevent unauthorized access and guarantee data authenticity.
Additionally, the paper discusses the strengths and weaknesses of each technique, their respective use cases and the evolving
challenges in the cryptographic landscape, including computational threats and the potential impact of quantum computing.
Ultimately, this study underscores the significance of hashing and encryption as cornerstones of modern cybersecurity practices,
offering solutions to safeguard digital assets in an increasingly interconnected world.

Keywords: Cryptography, Encryption, Hashing, Security, Data protection, Algorithms, Decryption, decode, ciphertext

1. Introduction cryptographic technique can be used to encrypt data, which can

then be delivered in an encrypted state and decrypted by the

intended recipient. It will be challenging to decode encrypted
Cryptography is the study and application of protecting data data if it is intercepted by a third party.

and communications from outside influence or manipulation.

Data confidentiality, integrity and authenticity are safeguarded

through the development of algorithms, protocols and systems.

1.1. Cryptography

In C#, a namespace is used to organize code into groups,
making it easier to manage and maintain. When working
From data storage and digital signatures to online banking and ~ With cryptog.raphy in C#, .the Systerp, Security. Cryptography
secure messaging, cryptography is a fundamental component of ~Namespace is used, which contains classes that provide

contemporary information security. cryptographic functionality, such as hashing, encryption and

. .. . digital signatures.
There is no way for entities to communicate securely over

public networks like the Internet. Unauthorized third parties Fundamental principles of cryptography:
may be able to view or even alter communications across 1
these networks. In addition to providing a safe method of
communicating over otherwise insecure channels, cryptography
also helps prevent data from being viewed and offers methods 2. Integrity: Ensuring that data is not changed while being

for determining whether it has been altered. For instance, a sent or stored.

Confidential: Ensuring that only those with permission can
access information.

https://doi.org/10.51219/JAIMLD/azrajabeen-mohamed-ali/411
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/azrajabeen-mohamed-ali/411

Ali AZM.,

3. Authentication: Verifying the identity of the sender or
receiver of the data.

4. Non-repudiation: Ensuring that a party cannot deny the
authenticity of their message.

1.2. Core Cryptographic Mechanism components

The core cryptographic mechanism components are
Encryption, Hashing, Digital signatures, Public key Infrastructure
(PKI), Cryptographic Protocols.

1.3. Encryption

Encryption in cryptography is the process of converting
plaintext (readable data) into ciphertext (unreadable data) using a
specific algorithm and a key. Encryption serves to safeguard data
secrecy by limiting access and comprehension to only those who
are permitted. The foundation of contemporary cryptography
is encryption, which guarantees the security of private data,
communications and passwords while they are being transmitted
or stored. It is classified into two types

1. Symmetric encryption is also known as Secret Key
Encryption or Private Key Encryption or Single Key
Encryption.

2. Asymmetric Encryption also known as Public Key
Encryption or Two Key Encryption.

1.4. Symmetric Encryption

Symmetric Encryption uses the same single secret key
for encryption and decryption. Because of this, it is known
as symmetric encryption and its methods are far faster than
public-key algorithms. The sender and receiver must both
possess the same secret key, which must be kept confidential.
AES (Advanced Encryption Standard), DES (Data Encryption
Standard), 3DES (Triple DES), RC4, Blowfish algorithm classes
are used to implement symmetric encryption. It is necessary
to create a key and an initialization vector (IV) for symmetric
algorithms. This key must be secret so it would be encrypted and
IV does not need to be secret so it can be sent as plain text. When
a new instance of one of the managed symmetric cryptographic
classes is created using the parameterless Create () function, a
new key and IV are automatically generated. Anybody who is
permitted to decode data needs to have the same key, IV and
algorithm.

A unique stream class known as a Crypto Stream is used
with the managed symmetric cryptography classes to encrypt
data that is read into the stream. A managed stream class, a
class that implements the ICryptoTransform interface (derived
from a class that implements a cryptographic algorithm) and
a CryptoStreamMode enumeration that specifies the kind of
access allowed to the CryptoStream are used to initialize the
CryptoStream class. Any class that inherits from the Stream
class, such as FileStream, MemoryStream and NetworkStream,
can be used to initialize the CryptoStream class. These classes
allows us to symmetrically encrypt a range of stream objects.

Below code (Figurel) demonstrates how to encrypt a
plaintext string using the AES algorithm and a password as the
key.

1.4.1. AES Encryption: The Aes.Create() method is used to
create an AES encryption object. The Key is a 16-byte key,
padded with PadRight(16) to ensure it’s the correct size for

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

AES-128 encryption. Typically, AES supports key sizes of 128,
192 or 256 bits and here we use 128 bits (16 bytes). The IV
(Initialization Vector) is set to a zeroed byte array of 16 bytes.
In real applications, it’s recommended to use a random IV for
enhanced security. GenerateKey and GeneratelV methods are
available to generate multiple keys and I'V.
static string Encrypt(string plainText, string password)
?sing (hes

aesAlg.Key = Encoding.UTF8.GetBytes(password.PadRight(16)); // AES requires 16 bytes key
aesAlg.IV = new byte[16]; // Initialization vector

aesAlg = Aes.Create()) // Create an instance of AES encryption

e an encryptor from the key and IV
&

Stream for encryption

Stream cs = new CryptoStrean(ms, encryptor, CryptoStreamMode.Write))

o the CryptoStream
Writer(cs))

sw.Write(plainText);// Write the plaintext to the stream to be encrypted

b}

}
return Cor
3l
H
}

nvert.ToBase6uString(ms.ToArray()];

Figure 1.

1.4.2. CryptoStream: This stream encrypts data in real-time
as it’s being written. It reads plaintext and writes ciphertext
(unreadable data) in the underlying MemoryStream.

1.4.3. Base64 Encoding: The result is a byte [] array (ciphertext),
which is then converted to a Base64 string. Base64 encoding is
used because it ensures the encrypted data can be represented as
readable text, suitable for storage or transmission.

Benefits of Symmetric Encryption:

1. Speed and Efficiency: In general, symmetric encryption
algorithms such as AES, DES and 3DES are quicker and
more effective than asymmetric encryption, particularly
when handling big data sets.

2. Security with Key Management: Symmetric encryption
can offer robust secrecy and privacy when combined with a
secure key management system (for example, via a secure
key exchange procedure).

3. Lower Computational Load: Symmetric encryption
puts less computational load on devices than asymmetric
encryption since it employs fewer mathematical procedures.

1.5. Challenges of Symmetric Encryption

1.5.1. Key Distribution Issue: The requirement that
communicating parties safely exchange and maintain the
secret key is the main drawback of symmetric encryption. The
encryption is rendered unsafe if the key is compromised.

1.6. Symmetric Decryption

Below code (Figure 2) demonstrates the Decrypt method
with the implementation of AES decryption in C#. It decrypts a
cipherText(whichisassumedtobe in Base64 format)usingagiven
password. The method converts the Base64-encoded cipherText
back into a byte array using Convert.FromBase64String (). The
byte array is passed into a MemoryStream that acts as a buffer
for the encrypted data. The CryptoStream is used to decrypt
the data, transforming the byte data into readable plaintext. A
StreamReader reads the decrypted data from the CryptoStream
and returns it as a string.

1.7. Asymmetric Encryption

Asymmetric encryption is also known by several other
names, including Public Key Encryption, Two-Key Encryption,

Ali AZM.,

Public/Private Key Encryption. A public key for encryption and
a private key for decryption is the two keys used in asymmetric
encryption. The private key is kept safe, but the public key is
readily exchanged. Many contemporary cryptographic systems,
including those that protect communications over the internet,
are based on this encryption technique. No need for the sender
and receiver to share the same secret key. RSA, ECC (Elliptic
Curve Cryptography), DSA (Digital Signature Algorithm) are
used to implement asymmetric encryption.

Figure 2.

To safeguard the encrypted data, the private key is maintained
secure and should never be lost or disclosed.

(Figure3) Below code demonstrates the method to encrypt
a message using RSA with OAEP padding and SHA-256 as the
hashing algorithm.

1.7.1. RSA Key Creation: RSA .Create() initializes a new RSA
object. This method is modern and should be used in place of the
older RSACryptoServiceProvider.

1.7.2. Loading the Public Key: The method rsa.
ImportRSAPublicKey(Convert.FromBase64String(publicKey),
out) is used to load the public key into the RSA instance. The
public key is expected to be in Base64-encoded format.

1.7.3. Encrypting the Message: Encoding.UTFS. GetBytes
(message) converts the message (string) into a byte array
so that it can be processed by the RSA algorithm. rsa.
Encrypt(messageBytes, RSAEncryptionPadding.OaepSHA256)
encrypts the byte array with the public key using OAEP padding
with SHA-256.

1.7.4. RSA Encryption: The rsa.Encrypt() method encrypts the
message. In this case, OAEP padding with SHA-256 is used,
which is more secure than the older PKCS#1 v1.5 padding. It
ensures that the encrypted data is protected against certain types
of cryptographic attacks.

Base64 Public Key: The public key is assumed to be in Base64
format (publicKey).

Public Key Format: With an XML format, it is to use rsa.
FromXmlString() instead of ImportRSAPublicKey(). If we are
using a PEM file format, we need to use a proper PEM parser.

RSA Limitations: RSA is generally not used to encrypt large
data directly due to limitations on the size of the message it
can encrypt based on the key size (typically around 256 bytes
for 2048-bit keys). For larger messages, RSA is often used to
encrypt a symmetric key (e.g., AES key) and then the symmetric
algorithm is used to encrypt the actual data.

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

static byte[] EncryptMessage(string message, string publicKey)

using (RSA rsa = RSA.Create())

{

/f Load the public key into the RSA object
rsa.ImportRSAPublicKey(Convert.FromBasesdString(publickey), out _);
// Encrypt the message
byte[] messageBytes = Encoding.UTF8.GetBytes(message);
return rsa.Encrypt(messageBytes, RSAEncryptionPadding.OaepSHA256);
}
¥

Figure 3.
1.8. Benefits of Asymmetric Encryption

Key Distribution: The issue of key distribution that symmetric
encryption faces is resolved by asymmetric encryption. It is
simple to send encrypted messages without requiring a secure
channel for key exchange because the private key is kept secret
while the public key can be published publicly.

Digital Signatures: The generation of digital signatures is
made possible by asymmetric encryption. With the private key, a
message can be signed and with the public key, the recipient can
confirm the signature. By doing this, the message’s integrity and
authenticity are guaranteed.

Secure Communication: It enables secure communication
over insecure channels, such as the internet. Public keys can be
shared openly, while private keys remain confidential.

1.9. Challenges of Asymmetric Encryption

Slower Performance: Because of the intricacy of the
mathematical calculations required, asymmetric encryption
performs more slowly than symmetric encryption, particularly
when dealing with huge data quantities.

Key Management: It still necessitates rigorous private
key management even though it circumvents the symmetric
encryption problem of key distribution. It is impossible to
decipher encrypted data if a private key is lost.

1.10. Asymmetric Decryption

(Figure 4) Below code is an example of asymmetric
decryption using RSA in C#. It decrypts an encrypted message
with the RSA private key and returns the decrypted message as
a string.

1.10.1. RSA Object: RSA.Create() initializes a new RSA
object. The “using” block ensures the RSA object is disposed of
properly once it’s no longer needed.

1.10.2. Private Key import: The private key is expected to be
Base64-encoded and is loaded into the RSA object using rsa.
ImportRSAPrivateKey(). This method expects the private key to
be in a specific format, often generated from the corresponding
public key used in encryption.

1.10.3. Decryption: The encrypted message is passed in as a
byte array (encryptedMessage). rsa.Decrypt() decrypts the data
using OAEP padding with SHA-256, which ensures security.

1.10.4. Return Decrypted Message: The decrypted byte array
is then converted to a UTF-8 string using Encoding.UTFS.
GetString(decryptedBytes).

1.10.5. Public Key Encryption: The message is encrypted
using the public key with OAEP SHA-256 padding for modern
security.

1.10.6. Private Key Decryption: The encrypted message is

Ali AZM.,

decrypted using the private key with the same OAEP SHA-256
padding to ensure that the decryption process matches the
encryption scheme. OAEP with SHA-256 provides a more secure
encryption method compared to the older PKCS#1 padding.

1.10.7. RSA Key Format: This code assumes that the public
and private keys are Base64-encoded strings. If keys are in XML
or PEM format, they will need to be converted to Base64 first or
handled with appropriate parsers.

// Decrypt the message using RSA private key
static string DecryptMessage(byte[] encryptedMessage, string privatekey)
{
using (RSA rsa = RSA.Create())
{
// Load the private key into the RSA object
rsa.ImportRSAPrivateKey(Convert . FromBase6uString(privatekey), out _);

// Decrypt the message
byte[] decryptedBytes = rsa.Decrypt(encryptedMessage, RSAEncryptio
return Encoding.UTFB.GetString(decryptedBytes);
1
H

nPadding.0aepSHA256) ;

static void Main()
{
// Step 1: Generate RSA Keys (Public and Private)
using (RSA rsa = RSA.Create())
i
// Export Public and Private Keys
string publicKey = ToBase6uString(rsa. ExportRSAPublickey());

string privateKey = .ToBasesd4string(rsa.ExportRSAPrivateKey());

riteLine("Public Key: "),
riteLine(publicKey);
riteLine("Private Hey: ");
riteline(privateKey);

// Step 2: Encrypt a message using the public key
string originalMessage = "Hello, this is a secret message!";
byte[] encryptedMessage = EncryptMessage(originalMessage, publickey);

e.WriteLine("\nEncrypted Message: ");
ole.WriteLine(Convert.ToBase6d4String(encryptediessage));

// Step 3: Decrypt the message using the private key
string decryptedMessage = DecryptMessage(encryptedMessage, privateKey);

riteLine("\nDecrypted Message: ");
riteLine(decryptedMessage);

L
H

Figure 4.
Tablel: Comparison between Symmetric and Asymmetric.
Asymmetric
Symmetric Encryption Encryption
Algorithm speed Fast Slow
No of Keys for
encryption and
decryption 1 2
AES (Advanced
Encryption Standard), | RSA, ECC (Elliptic
DES (Data Encryption | Curve Cryptography),
Standard), 3DES (Triple | DSA (Digital
Algorithm class used | DES), RC4, Blowfish Signature Algorithm)
Alias name Single Key Encryption Two Key Encryption

1.11. Hashing

The process of transforming an input (or “message”) into
a fixed-length string of characters, usually a digest, is known
as hashing in cryptography. Usually, a hash function produces
the outcome, which is known as the hash value or hash code.
Hashing is a one-way conversion and they are frequently used to
safeguard private information, including digital signatures and
passwords. Hashing in C# is straightforward with the System.
Security. Cryptography library. Hashing in C# is typically
accomplished with the use of libraries that offer a variety of
cryptographic techniques, including MD5 (Message Digest
Algorithm 5) and SHA (Secure Hash Algorithm).

Common hashing Algorithms in C#:

* SHA-256: A member of the SHA-2 family, it produces a
256-bit hash value and its widely used.

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

* SHA-512: Another member of the SHA-2 family, it
generates a 512-bit hash value and more secure than SHA1
and SHA256.

* SHAI1: Deprecated for most cryptographic purposes due to
vulnerabilities, but still supported.

e MDS5: While still widely used, MD5 is considered
cryptographically broken and unsuitable for security
purposes due to vulnerabilities.

(Figure 5) Below is an example of hashing data using
SHA-256 in C#

public static string ComputeSha25éHash(string rawData)
{
using (SHA256 sha256Hash = SHA256.Create())
i
// Compute hash from the bytes of the string
byte[] bytes = sha256Hash.ComputeHash(Encoding.UTFB.GetBytes(rawData));
// Convert the byte array to a hexadecimal string
StringBuilder builder = new StringBuilder();
foreach (byte bytevalue in bytes)
i
builder.Append(byteValue.ToString("x2"));
H
return builder.ToString();
1
3

Figure 5.

e SHA256.Create(): Creates an instance of the SHA-256
algorithm. It’s used to generate the hash.

1.11.1. Compute Hash(): This method takes the byte array of
the input data (rawData converted to UTF-8 bytes) and returns
the hash as a byte array. The length of the hash is fixed at 32
bytes (256 bits) for SHA-256.

1.11.2. Hexadecimal Conversion (x2): builder.
Append(byteValue.ToString(“x2”)): For each byte in the hash
array, this converts the byte to a two-digit hexadecimal string
(x2 stands for hexadecimal format with two digits). This is done
to represent the hash as a readable hexadecimal string.

1.11.3. StringBuilder: The StringBuilder class is used to
efficiently append each hexadecimal byte to the result string. It’s
generally more efficient than using regular string concatenation
inside a loop.

1.11.4. return builder.ToString();: Finally, the StringBuilder is
converted into a string and returned, which is the final SHA-256
hash in hexadecimal format.

SHA-256 is one of the most secure cryptographic hash
functions and is widely used for password hashing, data integrity
verification and digital signatures. Using StringBuilder for
constructing the hexadecimal string is optimal for performance,
especially when hashing larger inputs or using this function
repeatedly. This function is ready to use and can be incorporated
into larger cryptographic operations, such as password storage
or file integrity checks.

1.12. Benefits of Hashing

Data Integrity: Data integrity is ensured through hashing.
The hash is an effective instrument for confirming the integrity
of data because it will vary drastically if even a single bit of data
changes. Digital signatures and file verification benefit greatly
from this.

Efficiency: Hash functions are quick and low-cost to
compute. Even for big datasets, they can produce a hash value
fast.

Ali AZM.,

Password Storage: Hashing is a popular technique for safely
storing passwords. A password is hashed when it is created by
the user and only the hash is saved. In the event of a data breach,
the danger of exposure is decreased because the actual password
is never saved.

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

Fixed Output Size: The hash value (e.g., SHA-256) has a

fixed length, regardless of the input size. This makes handling
data simpler and more reliable.

Feature Hashing Symmetric Encryption Asymmetric Encryption
Seeurit Provides data integrity and | Ensures confidentiality of data with | Secures communication without sharing
Y authenticity shared key a secret key
Speed Very fast and efficient Faster than asymmetric encryption Slower than symmetric encryption
Use Cascs Password storage, file integrity, | Data encryption, = VPN, secure | Secure communications, digital
digital signatures communications signatures, blockchain
No keys to manage for | Requires secure ke distribution/ | Easy key distribution blic ke,
Key Management . Y g qu Y Y Y 15y Y Y . (pu v)
verification management private key needs protection
s R ibl ith ivate k fi
Reversibility One-way process (irreversible) | Reversible (with the same key) Cversibvie (wi private - key - for
decryption)
Non-repudiation Provides data verification No inherent non-repudiation Provides strong non-repudiation

Table 2: Summary of Benefits.
2. Conclusion

Cryptography is an essential technology for ensuring
the security and privacy of digital information in today’s
interconnected world. It enables secure communication, protects
sensitive data and supports trust in various systems. With ongoing
advancements, cryptography continues to evolve, meeting the
challenges of emerging technologies while safeguarding digital
assets. The best cryptographic method to use depends on the
specific security requirements and the context in which it is
being applied. Often, a combination of these techniques is used
to achieve robust security in modern systems (e.g., combining
asymmetric encryption for key exchange with symmetric
encryption for bulk data encryption).

3. References
1. https://www.c-sharpcorner.com/article/cryptography-in-net/

2. https://learn.microsoft.com/en-us/dotnet/api/system.security.
cryptography?view=net-9.0

3. https://learn.microsoft.com/en-us/dotnet/standard/security/
cryptographic-signatures

10.

1.

12.

https://learn.microsoft.com/en-us/dotnet/standard/security/
decrypting-data

https://learn.microsoft.com/en-us/dotnet/standard/security/
walkthrough-creating-a-cryptographic-application

https://learn.microsoft.com/en-us/dotnet/standard/security/
ensuring-data-integrity-with-hash-codes

Joseph Albahari and Ben Albahari, “C# 7.0 in a Nutshell 7™
Edition” O’Reilly Media, 2017.

Joseph Albahari and Ben Albahari, “C# 9.0 in a Nutshell” O'Reil-
ly Media, 2021.

Joseph Albahari and Ben Albahari, “C# 10.0 in a Nutshell”
O’Reilly Media, 2022.

Matthew Macdonald, Eric Johansen “C# Data Security Handbo-
ok” Apress Publication, 2003.

Rod Stephens, “C# 5.0 Programmer’s Reference” Wrox Publi-
cation, 2014.

Marius lulian Mihailescu, Stefania Loredana Nita “Pro Crypto-
graphy and Cryptanalysis: Creating Advanced Algorithms with
C# and .NET “Apress Publication, 2020.

https://www.c-sharpcorner.com/article/cryptography-in-net/
https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography?view=net-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography?view=net-9.0
https://learn.microsoft.com/en-us/dotnet/standard/security/cryptographic-signatures
https://learn.microsoft.com/en-us/dotnet/standard/security/cryptographic-signatures
https://learn.microsoft.com/en-us/dotnet/standard/security/decrypting-data
https://learn.microsoft.com/en-us/dotnet/standard/security/decrypting-data
https://learn.microsoft.com/en-us/dotnet/standard/security/walkthrough-creating-a-cryptographic-application
https://learn.microsoft.com/en-us/dotnet/standard/security/walkthrough-creating-a-cryptographic-application
https://learn.microsoft.com/en-us/dotnet/standard/security/ensuring-data-integrity-with-hash-codes
https://learn.microsoft.com/en-us/dotnet/standard/security/ensuring-data-integrity-with-hash-codes
https://www.amazon.in/C-9-0-Nutshell-Definitive-Reference/dp/1098100964
https://www.amazon.in/C-9-0-Nutshell-Definitive-Reference/dp/1098100964
https://www.amazon.com/Data-Security-Handbook-Matthew-Macdonald/dp/1861008015
https://www.amazon.com/Data-Security-Handbook-Matthew-Macdonald/dp/1861008015
https://www.wiley.com/en-us/C%23+5.0+Programmer's+Reference-p-9781118847299
https://www.wiley.com/en-us/C%23+5.0+Programmer's+Reference-p-9781118847299
https://www.amazon.in/Pro-Cryptography-Cryptanalysis-Creating-Algorithms/dp/1484263669
https://www.amazon.in/Pro-Cryptography-Cryptanalysis-Creating-Algorithms/dp/1484263669
https://www.amazon.in/Pro-Cryptography-Cryptanalysis-Creating-Algorithms/dp/1484263669

	_GoBack

