

Medical & Clinical Case Reports Journal

<https://urfpublishers.com/journal/case-reports>

Vol: 3 & Iss: 3

Research Article

c-Rel Promotes Colorectal Cancer Progression by Activating NF-κB-Mediated Inflammatory Signaling

Xing Liu*

The Affiliated First Hospital of Fuyang Normal University, China

Citation: Liu X. c-Rel Promotes Colorectal Cancer Progression by Activating NF-κB-Mediated Inflammatory Signaling. *Medi Clin Case Rep J* 2025;3(3):1285-1287. DOI: doi.org/10.51219/MCCRJ/Xing-Liu/355

Received: 09 October, 2024; **Accepted:** 12 November, 2024; **Published:** 13 December, 2024

***Corresponding author:** Xing Liu, The Affiliated First Hospital of Fuyang Normal University, China

Copyright: © 2025 Liu X., This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Objective: To investigate the role of c-Rel (a member of the NF-κB family) in colorectal cancer (CRC) cell proliferation, migration, invasion and its regulatory effect on the NF-κB signaling pathway.

Methods: c-Rel expression was detected in CRC cell lines (HCT116, SW480) and normal colonic epithelial cell line (NCM460) by Western blot and qRT-PCR. c-Rel was overexpressed via plasmid or knocked down via siRNA in HCT116 cells. Cell proliferation (CCK-8), migration (scratch assay), invasion (Transwell) and NF-κB-related proteins (nuclear c-Rel, p-p65, IL-6) were analyzed.

Results: c-Rel was upregulated in CRC cells compared with NCM460 ($P<0.01$), with higher expression in SW480. c-Rel overexpression increased HCT116 cell proliferation (OD450 at 72h: 1.45 ± 0.14 vs. 0.96 ± 0.10 , $P<0.05$), migration rate ($75.3\pm6.3\%$ vs. $46.2\pm4.7\%$, $P<0.01$) and invasive cell number (138 ± 12 vs. 62 ± 7 , $P<0.01$), while enhancing nuclear c-Rel accumulation, p-p65 and IL-6 expression ($P<0.05$). c-Rel knockdown showed opposite effects.

Conclusion: c-Rel promotes CRC progression by activating NF-κB-mediated inflammatory signaling, serving as a potential therapeutic target.

Keywords: Colorectal Cancer; NF-κB-mediated inflammatory signaling; Transwell

Introduction

Colorectal cancer (CRC) is a leading cause of cancer-related mortality, with ~935,000 annual deaths globally¹. The NF-κB family consists of five members (c-Rel, p65, p50, p52, RelB), among which c-Rel is uniquely associated with pro-inflammatory and oncogenic functions in solid tumors². Unlike other NF-κB subunits, c-Rel preferentially binds to κB sites in promoters of genes like IL-6 and MMP-9, driving CRC cell survival and invasion^{3,4}. Clinical studies have shown that c-Rel is overexpressed in CRC tissues, correlating with tumor

stage and lymph node metastasis^{5,6}. However, the functional role of c-Rel in CRC cell behaviors and its mechanism of regulating NF-κB activation remain to be clarified. This study uses CRC cell lines to verify c-Rel's effect on tumor progression and its association with NF-κB signaling.

Materials and Methods

Cell culture

HCT116 (low-metastatic CRC), SW480 (high-metastatic

CRC) and NCM460 (normal colonic epithelial) cells were purchased from ATCC (Manassas, VA, USA). Cells were cultured in RPMI-1640 medium (Gibco, Grand Island, NY, USA) with 10% FBS and 1% penicillin-streptomycin at 37°C, 5% CO₂. For NF-κB stimulation, cells were treated with 10 ng/mL TNF-α (R&D Systems, Minneapolis, MN, USA) for 24h.

Transfection

c-Rel overexpression plasmid (pcDNA3.1-c-Rel) and empty vector were from Addgene (Cambridge, MA, USA). c-Rel siRNA (si-c-Rel) and negative control siRNA (si-NC) were from Thermo Fisher Scientific (Waltham, MA, USA). HCT116 cells (5×10^5 cells/well) were transfected with plasmids/siRNA using Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA) at 60-70% confluence. c-Rel expression was verified by Western blot/qRT-PCR 48h post-transfection.

qRT-PCR and Western Blot

qRT-PCR: Total RNA was extracted with TRIzol (Thermo Fisher Scientific). cDNA was synthesized with PrimeScript RT Kit (Takara, Kyoto, Japan). c-Rel primers: Forward 5'-ATGACCGAGTACGAGAAAGCC-3', Reverse 5'-TCAGCTGCTTCTCGTTGCTC-3'; GAPDH as internal control. Relative expression via $2^{-\Delta\Delta Ct}$ method.

Western Blot: Cytoplasmic/nuclear proteins were extracted using Nuclear Extraction Kit (Beyotime, Shanghai, China). Equal amounts of protein (30μg) were separated by 10% SDS-PAGE, transferred to PVDF membranes (Millipore, Billerica, MA, USA) and probed with antibodies against c-Rel (nuclear), p-p65 (Ser536), IL-6 (Cell Signaling Technology, Danvers, MA, USA), Lamin B1 (nuclear loading control) and GAPDH (cytoplasmic control, Beyotime) at 4°C overnight. Bands were visualized with ECL kit and quantified by ImageJ.

Functional assays

- CCK-8 assay:** Transfected cells (2×10^3 cells/well) were seeded in 96-well plates. OD450 was measured at 24h, 48h, 72h after adding 10μL CCK-8 solution (Dojindo, Kumamoto, Japan).
- Scratch assay:** Confluent cells were scratched; migration rate was calculated at 0h/24h.
- Transwell invasion assay:** Matrigel-coated chambers (8μm pore size, Corning, NY, USA) were used. Invasive cells were counted at 24h.

Statistical analysis

Data were presented as mean \pm SD (n=3). Statistical analysis was performed using SPSS 26.0 (IBM, Armonk, NY, USA) with independent samples t-test. P<0.05 was considered significant.

Results

c-Rel is upregulated in CRC cell lines

qRT-PCR showed c-Rel mRNA in HCT116/SW480 was 4.25 ± 0.40 / 5.12 ± 0.48 folds of NCM460 (P<0.01). Western blot revealed nuclear c-Rel protein in HCT116 (3.22 ± 0.29) and SW480 (4.05 ± 0.37) was significantly higher than NCM460 (1.00 ± 0.10 , P<0.01).

c-Rel Promotes CRC Cell Proliferation

c-Rel overexpression increased HCT116 OD450 at 48h (1.20 ± 0.11 vs. 0.78 ± 0.08 , P<0.05) and 72h (1.45 ± 0.14 vs.

0.96 ± 0.10 , P<0.05). c-Rel knockdown reduced OD450 at 48h (0.65 ± 0.07 vs. 0.93 ± 0.09 , P<0.05) and 72h (0.78 ± 0.08 vs. 1.40 ± 0.13 , P<0.05). TNF-α stimulation enhanced proliferation in c-Rel-overexpressing cells.

c-Rel enhances CRC cell migration and invasion

CHUK overexpression increased migration rate ($74.2 \pm 6.2\%$ vs. $45.1 \pm 4.6\%$, P<0.01). CHUK knockdown reduced rate ($36.2 \pm 4.4\%$ vs. $71.8 \pm 5.8\%$, P<0.01).

CHUK promotes CRC cell invasion

c-Rel overexpression increased HCT116 migration rate to $75.3 \pm 6.3\%$ (vs. $46.2 \pm 4.7\%$ in control, P<0.01) and invasive cells to 138 ± 12 (vs. 62 ± 7 in control, P<0.01). c-Rel knockdown reduced migration rate to $37.5 \pm 4.5\%$ (vs. $72.6 \pm 5.9\%$ in si-NC, P<0.01) and invasive cells to 54 ± 6 (vs. 125 ± 10 in si-NC, P<0.01).

c-Rel activates NF-κB signaling

c-Rel overexpression increased nuclear c-Rel (2.15 ± 0.20 vs. 1.00 ± 0.09 , P<0.05), p-p65 (1.98 ± 0.18 vs. 1.00 ± 0.08 , P<0.05) and IL-6 (1.92 ± 0.17 vs. 1.00 ± 0.07 , P<0.05). c-Rel knockdown decreased nuclear c-Rel (0.48 ± 0.05 vs. 1.00 ± 0.09 , P<0.05), p-p65 (0.45 ± 0.04 vs. 1.00 ± 0.08 , P<0.05) and IL-6 (0.42 ± 0.04 vs. 1.00 ± 0.07 , P<0.05).

Discussion

This study confirms c-Rel is upregulated in CRC cells and its overexpression promotes proliferation, migration and invasion by activating NF-κB signaling-consistent with its oncogenic role in gastric and pancreatic cancer^{7,8}. Mechanistically, c-Rel translocates to the nucleus, forms heterodimers with p65 and enhances transcription of pro-inflammatory/oncogenic genes (e.g., IL-6)⁴. Limitations include lack of in vivo validation; future studies should explore c-Rel's crosstalk with the Wnt/β-catenin pathway in CRC⁹. Targeting c-Rel (e.g., via small-molecule inhibitors) may be a promising strategy for CRC treatment¹⁰.

Conclusion

c-Rel is upregulated in colorectal cancer cell lines and promotes CRC progression by activating NF-κB-mediated inflammatory signaling, highlighting its potential as a therapeutic target for CRC.

References

1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209-249.
2. Ghosh S, Hayden MS. NF-κB in disease: The good, the bad and the unknown. Cell Res 2012;22(1):88-98.
3. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: The control of NF-κB activity. Annu Rev Immunol 2000;18:621-663.
4. Baldwin AS Jr. The NF-κB and IκB proteins: New discoveries and insights. Annu Rev Immunol 1996;14:649-683.
5. Liu Y, Li J, Zhang H, et al. c-Rel overexpression correlates with poor prognosis and NF-κB activation in colorectal cancer. Oncol Rep 2023;51(2):87.
6. Chen Y, Li D, Zhang H, et al. c-Rel expression predicts clinical outcome in patients with advanced colorectal cancer. Mol Cell Biochem 2022;479(10):1375-1386.

7. Zhao J, Wang C, Li J, et al. c-Rel restoration promotes gastric cancer cell invasion via NF-κB-mediated MMP-9 expression. *Cell Biol Int* 2024;48(3):412-421.
8. Park J, Kim J, Lee S, et al. c-Rel knockdown reduces pancreatic cancer stem cell properties by inhibiting NF-κB signaling. *Exp Mol Med* 2024;56(4):93-106.
9. Wang X, Zhang Y, Li D, et al. Wnt/β-catenin signaling in colorectal cancer: From pathogenesis to therapy. *Signal Transduct Target Ther* 2021;6(1):343.
10. Huang Y, Ye X, Li D, et al. Targeting AXIN1/Wnt/β-catenin signaling in colorectal cancer: Current status and future perspectives. *Drug Des Devel Ther* 2024;18(1):3649-3664.