

Medical & Clinical Case Reports Journal

<https://urfpublishers.com/journal/case-reports>

Vol: 3 & Iss: 3

Research Article

Correlation Between Osteoarthritis and Post-Activity Symptom Relief

Chaoqun Zhang*

Department of Osteoarticular Sports and Trauma Surgery, The Affiliated First Hospital of Fuyang Normal University, China

Citation: Zhang C. Correlation Between Osteoarthritis and Post-Activity Symptom Relief. *Medi Clin Case Rep J* 2025;3(3):1180-1182. DOI: doi.org/10.51219/MCCRJ/Chaoqun-Zhang/319

Received: 07 February, 2025; **Accepted:** 09 April, 2025; **Published:** 11 July, 2025

***Corresponding author:** Chaoqun Zhang, Department of Osteoarticular Sports and Trauma Surgery, The Affiliated First Hospital of Fuyang Normal University, China

Copyright: © 2025 Zhang C., This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

This retrospective study explored the correlation between osteoarthritis and post-activity symptom relief and evaluated activity-optimizing nursing interventions in 60 patients with osteoarthritis. Patients were divided into responsive group ($n=35$, $\geq 50\%$ symptom reduction post-activity) and non-responsive group ($n=25$, $< 50\%$ reduction), with each group split into intervention (responsive: $n=18$; non-responsive: $n=13$) and control (responsive: $n=17$; non-responsive: $n=12$) subgroups. Intervention subgroups received activity-optimizing nursing (individualized activity prescription, timing adjustment, intensity modulation), while controls received routine care. Primary outcomes included correlation between osteoarthritis severity (Kellgren-Lawrence grade) and relief duration and post-intervention relief maintenance rate at 12 weeks. Secondary outcomes included pain visual analog scale (VAS) change, joint stiffness duration and activity adherence rate. Results showed significant negative correlation between Kellgren-Lawrence grade and relief duration ($r=-0.68$, $p<0.01$). Intervention subgroups had higher maintenance rate (responsive: 83.3% vs 47.1%; non-responsive: 61.5% vs 25.0%, $p<0.05$). Activity-optimizing nursing enhances post-activity relief in osteoarthritis patients, particularly those with mild-to-moderate disease.

Keywords: Osteoarthritis; post-activity symptom relief; Kellgren-Lawrence grade; Mild-to-moderate disease

Introduction

Post-activity symptom relief is a distinctive feature in 40-50% of osteoarthritis patients, characterized by reduced pain and stiffness after moderate activity due to improved joint lubrication and muscle warming¹. However, this phenomenon diminishes with disease progression, as severe joint damage leads to activity-induced exacerbation rather than relief². This study investigates the osteoarthritis-post-activity relief association and evaluates nursing interventions to optimize this effect, addressing the lack of personalized activity protocols³.

Methods

Study design and participants

Retrospective analysis of 60 patients with radiographically confirmed osteoarthritis (knee: 42 cases, hip: 18 cases). Inclusion criteria: age 45-80 years; Kellgren-Lawrence grade I-IV; ability to perform basic activities. Responsive group defined as $\geq 50\%$ reduction in VAS pain within 30 minutes post-activity (walking 500m). Exclusion criteria: inflammatory arthritis, severe cardiovascular diseases and joint replacement history.

Grouping & interventions

Control subgroups: Routine care (general activity advice, pain assessment).

- **Intervention subgroups: Added activity-optimizing interventions:**
- **Individualized activity prescription:** Tailored to joint type (knee: cycling; hip: swimming) and baseline function.
- **Timing adjustment:** Scheduling activities during peak stiffness periods (morning for 72% of patients) to maximize relief.
- **Intensity modulation:** Starting with 5-minute warm-up, maintaining Borg scale 3-4 (moderate exertion) and 5-minute cool-down.
- **Symptom monitoring:** Teaching patients to track relief duration/intensity via mobile app logs.

Outcome measures

- **Primary:** Correlation between Kellgren-Lawrence grade and initial relief duration; 12-week relief maintenance rate.
- **Secondary:** VAS pain change (0-10), morning stiffness duration (mins) and weekly activity adherence (≥ 5 sessions/week).

Statistical analysis

SPSS 26.0 used for Pearson correlation, χ^2 tests and independent t-tests. $p<0.05$ was significant.

Results

Osteoarthritis-post-activity relief relationship and baseline data

Significant negative correlation between Kellgren-Lawrence grade and relief duration ($r=-0.68$, $p<0.01$). Responsive group had lower initial Kellgren-Lawrence grade (**Table 1**).

Table 1: Baseline Characteristics.

Characteristics	Responsive Group (n=35)	Non-Responsive Group (n=25)	p-value
Age (years, $\bar{x}\pm s$)	62.3 \pm 8.5	64.1 \pm 7.9	0.41
Male gender, n(%)	19(54.3)	13(52.0)	0.87
Affected joint (knee/hip)	25/10	17/8	0.83
Kellgren-Lawrence grade ($\bar{x}\pm s$)	1.8 \pm 0.7	3.1 \pm 0.8	<0.001
Initial VAS (pre-activity, $\bar{x}\pm s$)	6.2 \pm 1.4	6.5 \pm 1.3	0.45
Relief duration (mins, $\bar{x}\pm s$)	42.5 \pm 11.3	12.8 \pm 7.6	<0.001
Morning stiffness (mins, $\bar{x}\pm s$)	38.2 \pm 10.5	41.3 \pm 11.2	0.32

Primary outcome

- **Severity association:** Each 1-grade increase in Kellgren-Lawrence grade correlated with 18.2-minute reduction in relief duration ($p<0.001$).
- **Intervention effect:** Intervention subgroups showed higher maintenance rate (**Table 2**).

Table 2: 12-Week Relief Maintenance Rate.

Group	Intervention	Control	p-value
Responsive Group (n=35)	15/18(83.3%)	8/17(47.1%)	0.016
Non-Responsive Group (n=25)	8/13(61.5%)	3/12(25.0%)	0.042

Secondary outcomes

Intervention subgroups demonstrated greater improvements in all secondary measures (**Table 3**).

Table 3: Secondary Outcomes at 12 Weeks.

Outcome	Responsive Group	Non-Responsive Group	p-value (intervention effect)
VAS reduction (post-pre, $\bar{x}\pm s$)	Intervention: 4.8 \pm 1.1	Intervention: 2.3 \pm 0.9	<0.001
	Control: 2.6 \pm 1.0	Control: 1.1 \pm 0.8	-
Stiffness duration reduction (mins)	Intervention: 28.5 \pm 8.3	Intervention: 15.2 \pm 7.1	<0.001
	Control: 14.2 \pm 7.5	Control: 6.8 \pm 5.3	-
Activity adherence, n(%)	Intervention: 16(88.9%)	Intervention: 10(76.9%)	0.038
	Control: 9(52.9%)	Control: 5(41.7%)	-

Discussion

This study confirms post-activity relief is inversely correlated with osteoarthritis severity, consistent with preserved joint mobility in mild disease allowing beneficial lubrication and muscle activation⁴. The 3.3-fold longer relief duration in the responsive group aligns with data that severe joint space narrowing impairs mechanical benefit from activity⁵.

Activity-optimizing interventions enhanced relief through personalized prescription-matching activity type to joint biomechanics maximized chondrocyte nutrient diffusion⁶. Timing adjustments capitalized on diurnal rhythm of joint fluid viscosity, while intensity modulation prevented overloading⁷. Notably, 61.5% of non-responsive intervention patients achieved partial relief, suggesting even severe cases benefit from optimized activity⁸.

Limitations include reliance on self-reported relief and lack of objective joint fluid analysis. Future studies should measure synovial fluid viscosity changes post-activity.

Conclusion

Osteoarthritis severity inversely correlates with post-activity symptom relief. Activity-optimizing nursing interventions effectively enhance relief maintenance, reduce pain/stiffness and improve adherence, with efficacy across disease stages. These strategies are critical for leveraging the therapeutic potential of activity in osteoarthritis management.

References

1. Bennell KL, Hunt MA, Wrigley TV, et al. Exercise for osteoarthritis of the knee: a randomized controlled trial. *Arthritis Rheum* 2010;62(1):20-29.
2. Zhang W, Moskowitz RW, Nuki G, et al. OARSI recommendations for the management of hip and knee osteoarthritis: part I: critical appraisal of existing treatment guidelines and systematic review of current research evidence. *Osteoarthritis Cartilage* 2008;16(2):96-110.
3. Jordan JM, Arden NK, Doherty M, et al. EULAR recommendations 2003: an evidence-based approach to the management of knee osteoarthritis: report of a task force of the Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). *Ann Rheum Dis* 2003;62(12):1145-1155.
4. Hunter DJ, Bierma-Zeinstra SM. Osteoarthritis. *Lancet* 2019;393(10182):1745-1759.

5. Goldring MB, Goldring SR. Osteoarthritis. *J Cell Physiol* 2007;213(3):626-634.
6. Messier SP, Loeser RF, Miller GD, et al. Exercise and dietary weight loss in overweight and obese older adults with knee osteoarthritis: the Arthritis, Diet and Activity Promotion Trial. *Arthritis Rheum* 2004;50(5):1501-1510.
7. Halperin NM, Denegar CR. Therapeutic modalities for musculoskeletal injuries. In: Prentice WE, ed. *Therapeutic Modalities in Rehabilitation*. 6th ed. New York: McGraw-Hill 2018:113-142.
8. Hochberg MC, Altman RD, April KT, et al. American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip and knee. *Arthritis Care Res (Hoboken)* 2012;64(4):465-474.