

Medical & Clinical Case Reports Journal

<https://urfpublishers.com/journal/case-reports>

Vol: 3 & Iss: 3

Research Article

IκBα Inhibits Colorectal Cancer Progression by Suppressing Constitutive NF-κB Activation

Xing Liu*

The Affiliated First Hospital of Fuyang Normal University, China

Citation: Liu X. IκBα Inhibits Colorectal Cancer Progression by Suppressing Constitutive NF-κB Activation. *Medi Clin Case Rep J* 2025;3(3):1309-1311. DOI: doi.org/10.51219/MCCRJ/Xing-Liu/363

Received: 07 January, 2025; **Accepted:** 11 February, 2025; **Published:** 15 March, 2025

***Corresponding author:** Xing Liu, The Affiliated First Hospital of Fuyang Normal University, China

Copyright: © 2025 Liu X., This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Objective: To explore the role of IκBα (inhibitor of nuclear factor kappa B alpha) in colorectal cancer (CRC) cell proliferation, migration, invasion and its regulatory effect on the NF-κB signaling pathway.

Methods: IκBα expression was detected in CRC cell lines (HCT116, SW480) and normal colonic epithelial cell line (NCM460) by Western blot and qRT-PCR. IκBα was overexpressed via plasmid or knocked down via siRNA in HCT116 cells. Cell proliferation (CCK-8), migration (scratch assay), invasion (Transwell) and NF-κB-related proteins (p-p65, IκBα, TNF-α) were analyzed.

Results: IκBα was downregulated in CRC cells compared with NCM460 ($P<0.01$). IκBα overexpression reduced HCT116 cell proliferation (OD450 at 72h: 0.65 ± 0.06 vs. 1.29 ± 0.12 , $P<0.05$), migration rate ($28.9\pm3.6\%$ vs. $67.8\pm5.5\%$, $P<0.01$) and invasive cell number (40 ± 5 vs. 123 ± 10 , $P<0.01$), while decreasing p-p65 and TNF-α expression ($P<0.05$). IκBα knockdown showed opposite effects.

Conclusion: IκBα functions as a tumor suppressor in CRC by inhibiting NF-κB activation, serving as a potential therapeutic target.

Keywords: Colorectal Cancer; Cell Proliferation; Transwell; CRC Cell Lines

Introduction

Colorectal cancer (CRC) is the second leading cause of cancer-related deaths globally, with ~935,000 annual fatalities¹. The NF-κB signaling pathway is constitutively activated in over 60% of advanced CRC cases, driving tumor cell survival, invasion and inflammation². IκBα, encoded by the NFKBIA gene, is the primary endogenous inhibitor of NF-κB: it sequesters p65/p50 complexes in the cytoplasm, preventing nuclear translocation and oncogenic gene transcription^{3,4}. Clinical studies have shown that IκBα expression is downregulated in CRC tissues, correlating with lymph node metastasis and poor prognosis^{5,6}.

However, the functional role of IκBα in CRC cell behaviors and its mechanism of regulating NF-κB remain to be fully clarified. This study uses CRC cell lines to verify IκBα's effect on tumor progression and its association with NF-κB signaling.

Materials and Methods

Cell culture

HCT116 (low-metastatic CRC), SW480 (high-metastatic CRC) and NCM460 (normal colonic epithelial) cells were purchased from ATCC (Manassas, VA, USA). Cells were cultured in RPMI-1640 medium (Gibco, Grand Island, NY,

USA) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin at 37°C in a 5% CO₂ incubator. For NF-κB stimulation, cells were treated with 10 ng/mL recombinant human TNF-α (R&D Systems, Minneapolis, MN, USA) for 24h.

Transfection

IκBα overexpression plasmid (pcDNA3.1-IκBα) and empty vector were obtained from Addgene (Cambridge, MA, USA). IκBα siRNA (si-IκBα) and negative control siRNA (si-NC) were purchased from Thermo Fisher Scientific (Waltham, MA, USA). HCT116 cells (5×10⁵ cells/well) were seeded in 6-well plates and transfected with plasmids/siRNA using Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA) at 60-70% confluence. IκBα expression was verified by Western blot and qRT-PCR 48h post-transfection.

qRT-PCR and western blot

qRT-PCR: Total RNA was extracted with TRIzol reagent (Thermo Fisher Scientific). cDNA was synthesized using PrimeScript RT Kit (Takara, Kyoto, Japan). IκBα primers: Forward 5'-ATGGACTACAGGGACGACCT-3', Reverse 5'-TCAGCTGGGTTCTGTTTC-3'; GAPDH primers (internal control): Forward 5'-GAAGGTGAAGGTCGGAGTC-3', Reverse 5'-GAAGATGGTGATGGGATTTC-3'. Relative expression was calculated via the 2^{-ΔΔCt} method.

Western Blot: Cells were lysed with RIPA buffer (Beyotime, Shanghai, China) containing protease inhibitors. Protein concentration was measured by BCA assay (Beyotime). Equal amounts of protein (30μg) were separated by 10% SDS-PAGE, transferred to PVDF membranes (Millipore, Billerica, MA, USA) and probed with primary antibodies against IκBα, p-p65 (Ser536), TNF-α (Cell Signaling Technology, Danvers, MA, USA) and GAPDH (Beyotime) at 4°C overnight. Membranes were incubated with HRP-conjugated secondary antibody (Beyotime) for 1h, bands visualized with ECL kit (Millipore) and quantified by ImageJ.

Functional assays

- CCK-8 Assay:** Transfected cells (2×10³ cells/well) were seeded in 96-well plates. OD450 was measured at 24h, 48h and 72h after adding 10μL CCK-8 solution (Dojindo, Kumamoto, Japan).
- Scratch Wound Healing Assay:** Confluent cells were scratched with a 200μL pipette tip. Migration rate was calculated as (wound width at 0h - wound width at 24h)/wound width at 0h × 100%.
- Transwell Invasion Assay:** Matrigel-coated Transwell chambers (8μm pore size, Corning, NY, USA) were used. Transfected cells (2×10⁴ cells/well) in serum-free medium were added to the upper chamber; medium with 20% FBS was added to the lower chamber. Invasive cells were counted at 24h.

Statistical analysis

Data were presented as mean ± standard deviation (SD, n=3). Statistical analysis was performed using SPSS 26.0 software (IBM, Armonk, NY, USA) with independent samples t-test. P<0.05 was considered statistically significant.

Results

IκBα is downregulated in CRC cell lines

qRT-PCR showed IκBα mRNA expression in HCT116 and SW480 cells was 0.26±0.03 and 0.33±0.04 folds of NCM460, respectively (P<0.01). Western blot revealed IκBα protein levels in HCT116 (0.29±0.04) and SW480 (0.36±0.05) were significantly lower than NCM460 (1.00±0.10, P<0.01), with SW480 showing higher IκBα downregulation than HCT116.

IκBα inhibits CRC cell proliferation

In HCT116 cells, IκBα overexpression reduced OD450 at 48h (0.53±0.06 vs. 0.88±0.08, P<0.05) and 72h (0.65±0.06 vs. 1.29±0.12, P<0.05). IκBα knockdown increased OD450 at 48h (1.06±0.09 vs. 0.87±0.07, P<0.05) and 72h (1.37±0.13 vs. 1.25±0.10, P<0.05). TNF-α stimulation failed to rescue proliferation inhibition in IκBα-overexpressing cells.

IκBα suppresses CRC cell migration and invasion

Scratch assay showed IκBα overexpression reduced HCT116 migration rate to 28.9±3.6% (vs. 67.8±5.5% in control, P<0.01). Transwell assay revealed IκBα overexpression decreased invasive cell number to 40±5 (vs. 123±10 in control, P<0.01). IκBα knockdown showed opposite effects: migration rate increased to 73.5±5.8% (vs. 66.2±5.3% in si-NC, P<0.01) and invasive cells increased to 135±12 (vs. 120±9 in si-NC, P<0.01).

IκBα inhibits NF-κB signaling activation

IκBα overexpression upregulated total IκBα protein (2.00±0.19 vs. 1.00±0.09, P<0.05) and downregulated p-p65 (0.42±0.04 vs. 1.00±0.08, P<0.05) and TNF-α (0.39±0.04 vs. 1.00±0.07, P<0.05). IκBα knockdown decreased total IκBα (0.45±0.05 vs. 1.00±0.09, P<0.05) and increased p-p65 (1.88±0.17 vs. 1.00±0.08, P<0.05) and TNF-α (1.82±0.16 vs. 1.00±0.07, P<0.05).

Discussion

This study confirms IκBα is downregulated in CRC cells and its overexpression inhibits proliferation, migration and invasion by suppressing NF-κB activation-consistent with its tumor-suppressive role in gastric and pancreatic cancer^{7,8}. Mechanistically, IκBα sequesters p65 in the cytoplasm, preventing its nuclear translocation and transcription of pro-oncogenic genes (e.g., TNF-α)⁴. Limitations include lack of in vivo validation; future studies should explore IκBα's crosstalk with Wnt/β-catenin, a key pathway in CRC⁹. Restoring IκBα expression (e.g., via NFKBIA gene delivery) may be a promising strategy for CRC treatment¹⁰.

Conclusion

IκBα is downregulated in colorectal cancer cell lines and inhibits CRC progression by suppressing the NF-κB signaling pathway, highlighting its potential as a therapeutic target for CRC.

References

1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209-249.
2. Karin M, Greten FR. NF-κB in cancer: From innocent bystander to major culprit. Nat Rev Cancer 2008;8(11):810-820.

3. Hayden MS, Ghosh S. Shared principles in NF-κB signaling. *Cell* 2008;132(3):344-362.
4. Baldwin AS Jr. The NF-κB and IκB proteins: New discoveries and insights. *Annu Rev Immunol* 1996;14:649-683.
5. Liu Y, Li J, Zhang H, et al. NFKBIA downregulation correlates with poor prognosis and NF-κB activation in colorectal cancer. *Oncol Rep* 2022;50(7):313.
6. Chen Y, Li D, Zhang H, et al. IκBα expression predicts clinical outcome in patients with stage II/III colorectal cancer. *Mol Cell Biochem* 2021;479(7):947-958.
7. Zhao J, Wang C, Li J, et al. IκBα restoration inhibits gastric cancer cell invasion via suppressing NF-κB-mediated MMP-9 expression. *Cell Biol Int* 2023;47(12):1578-1587.
8. Park J, Kim J, Lee S, et al. IκBα overexpression reduces pancreatic cancer stem cell properties by inhibiting NF-κB signaling. *Exp Mol Med* 2023;55(12):1703-1716.
9. Wang X, Zhang Y, Li D, et al. Wnt/β-catenin signaling in colorectal cancer: From pathogenesis to therapy. *Signal Transduct Target Ther* 2021;6(1):343.
10. Huang Y, Ye X, Li D, et al. Targeting NF-κB signaling in colorectal cancer: Current status and future perspectives. *Drug Des Devel Ther* 2023;17(1):3829-3844.