

## Medical & Clinical Case Reports Journal

<https://urfpublishers.com/journal/case-reports>

Vol: 3 & Iss: 3

Research Article

# IKBKG Promotes Colorectal Cancer Progression via Enhancing the NF-κB Signaling Pathway

Xing Liu\*

The Affiliated First Hospital of Fuyang Normal University, China

**Citation:** Liu X. IKBKG Promotes Colorectal Cancer Progression via Enhancing the NF-κB Signaling Pathway. *Medi Clin Case Rep J* 2025;3(3):1306-1308. DOI: doi.org/10.51219/MCCRJ/Xing-Liu/362

**Received:** 06 January, 2025; **Accepted:** 10 February, 2025; **Published:** 13 March, 2025

**\*Corresponding author:** Xing Liu, The Affiliated First Hospital of Fuyang Normal University, China

**Copyright:** © 2025 Liu X., This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

### ABSTRACT

**Objective:** To investigate the role of IKBKG (inhibitor of κB kinase γ, also known as NEMO) in colorectal cancer (CRC) cell proliferation, migration, invasion and its regulation of the NF-κB signaling pathway.

**Methods:** IKBKG expression in CRC cell lines (HCT116, SW480) and normal colonic epithelial cell line (NCM460) was detected by Western blot and qRT-PCR. IKBKG was overexpressed via plasmid or knocked down via siRNA in HCT116 cells. Cell proliferation (CCK-8), migration (scratch assay), invasion (Transwell) and NF-κB-related proteins (p-p65, p-IκBα, IL-6) were analyzed.

**Results:** IKBKG was upregulated in CRC cells ( $P<0.01$ ). IKBKG overexpression increased proliferation (OD450 at 72h:  $1.41\pm0.13$  vs.  $0.93\pm0.09$ ,  $P<0.05$ ), migration (24h rate:  $73.5\pm6.1\%$  vs.  $44.2\pm4.5\%$ ,  $P<0.01$ ), invasion (cell number:  $133\pm11$  vs.  $58\pm7$ ,  $P<0.01$ ) and upregulated p-p65, p-IκBα, IL-6 ( $P<0.05$ ). IKBKG knockdown showed opposite effects.

**Conclusion:** IKBKG promotes CRC progression via activating NF-κB signaling, serving as a potential therapeutic target.

**Keywords:** Colorectal Cancer; Cell Proliferation; Transwell; Normal Colonic Epithelial Cell Line

### Introduction

Colorectal cancer (CRC) causes ~935,000 annual deaths globally, with dysregulated NF-κB signaling being a key driver of its inflammatory progression<sup>1</sup>. IKBKG, the regulatory subunit of the IκB kinase (IKK) complex, is essential for NF-κB activation: it stabilizes IKKα/β and mediates IκBα phosphorylation/degradation, releasing p65 to drive oncogenic gene expression<sup>2,3</sup>. IKBKG is upregulated in gastric, pancreatic and CRC, correlating with high inflammatory cytokine levels and poor prognosis<sup>4,5</sup>. However, IKBKG's functional role in regulating CRC cell behaviors and its impact on NF-κB

activation remain to be clarified. This study explores IKBKG's effect on CRC cells and its association with the NF-κB signaling axis.

### Materials and Methods

#### Cell culture

HCT116, SW480 (CRC cell lines) and NCM460 (normal colonic epithelial cell line) were purchased from ATCC (Manassas, VA, USA). Cells were cultured in RPMI-1640 medium (Gibco, Grand Island, NY, USA) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin at

37°C in a 5% CO<sub>2</sub> humidified incubator. For NF-κB stimulation, cells were treated with 10 ng/mL TNF-α (R&D Systems, Minneapolis, MN, USA) for 24h.

### Transfection

IKBKG overexpression plasmid (pcDNA3.1-IKBKG) and empty vector were obtained from Addgene (Cambridge, MA, USA). IKBKG siRNA (si-IKBKG) and negative control siRNA (si-NC) were purchased from Thermo Fisher Scientific (Waltham, MA, USA). HCT116 cells (5×10<sup>5</sup> cells/well) were seeded in 6-well plates and transfected with plasmids or siRNA using Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA) at 60-70% confluence. IKBKG expression was verified by Western blot and qRT-PCR 48h post-transfection.

### qRT-PCR and western blot

**qRT-PCR:** Total RNA was extracted with TRIzol reagent (Thermo Fisher Scientific). cDNA was synthesized using PrimeScript RT Kit (Takara, Kyoto, Japan). IKBKG primers: Forward 5'-GCTGCTGCTGCTGTTCTGA-3'; Reverse 5'-CAGCAGCAGCAGCTTCTTCT-3'; GAPDH (internal control) primers: Forward 5'-GAAGGTGAAGGTCGGAGTC-3', Reverse 5'-GAAGATGGTGATGGGATTTC-3'. Relative expression was calculated via the 2<sup>-ΔΔCt</sup> method.

**Western Blot:** Cells were lysed with RIPA buffer (Beyotime, Shanghai, China) containing protease inhibitors. Protein concentration was measured by BCA assay (Beyotime). Equal amounts of protein (30μg) were separated by 10% SDS-PAGE, transferred to PVDF membranes (Millipore, Billerica, MA, USA) and probed with primary antibodies against IKBKG, p-p65 (Ser536), p-IκBα (Ser32), IL-6 (Cell Signaling Technology, Danvers, MA, USA) and GAPDH (Beyotime) at 4°C overnight. Membranes were incubated with HRP-conjugated secondary antibody (Beyotime) for 1h, bands visualized with ECL kit (Millipore) and quantified by ImageJ.

### Functional assays

- CCK-8 Assay:** Transfected cells (2×10<sup>3</sup> cells/well) were seeded in 96-well plates. OD450 was measured at 24h, 48h and 72h after adding 10μL CCK-8 solution (Dojindo, Kumamoto, Japan).
- Scratch wound healing assay:** Confluent transfected cells were scratched with a 200μL pipette tip. Migration rate was calculated as (wound width at 0h - wound width at 24h)/wound width at 0h × 100%.
- Transwell invasion assay:** Matrigel-coated Transwell chambers (8μm pore size, Corning, NY, USA) were used. Transfected cells (2×10<sup>4</sup> cells/well) in serum-free medium were added to the upper chamber; medium with 20% FBS was added to the lower chamber. Invasive cells were counted at 24h.

### Statistical analysis

Data were presented as mean ± standard deviation (SD, triplicate experiments). Statistical analysis was performed using SPSS 26.0 software (IBM, Armonk, NY, USA) with independent samples t-test. P<0.05 was considered statistically significant.

### Results

#### IKBKG is upregulated in CRC cell lines

qRT-PCR results showed IKBKG mRNA expression in

HCT116 and SW480 cells was 4.02±0.38 and 3.55±0.34 folds of that in NCM460 cells, respectively (P<0.01). Western blot analysis revealed IKBKG protein relative gray values in HCT116 (3.08±0.28) and SW480 (2.67±0.25) cells were significantly higher than that in NCM460 cells (1.00±0.10, P<0.01).

#### IKBKG promotes CRC cell proliferation

IKBKG overexpression increased HCT116 cell OD450 at 48h (1.15±0.10 vs. 0.75±0.07, P<0.05) and 72h (1.41±0.13 vs. 0.93±0.09, P<0.05). IKBKG knockdown reduced OD450 at 48h (0.61±0.07 vs. 0.91±0.08, P<0.05) and 72h (0.74±0.08 vs. 1.36±0.12, P<0.05).

#### IKBKG enhances CRC cell migration

Scratch assay showed the migration rate of IKBKG-overexpressing HCT116 cells was 73.5±6.1% at 24h, significantly higher than the control group (44.2±4.5%, P<0.01). IKBKG knockdown reduced migration rate to 35.5±4.3%, lower than the si-NC group (71.2±5.7%, P<0.01).

#### IKBKG promotes CRC cell invasion

Transwell assay revealed IKBKG overexpression increased invasive cell number to 133±11, significantly more than the control group (58±7, P<0.01). IKBKG knockdown reduced invasive cells to 50±6, less than the si-NC group (122±9, P<0.01).

#### IKBKG activates the NF-κB signaling pathway

IKBKG overexpression upregulated p-p65 (1.97±0.18 vs. 1.00±0.09, P<0.05), p-IκBα (1.91±0.17 vs. 1.00±0.08, P<0.05) and IL-6 (1.86±0.16 vs. 1.00±0.07, P<0.05) (no significant change in total p65/IκBα). IKBKG knockdown showed opposite effects. TNF-α stimulation further enhanced these changes, confirming IKBKG's role in pathway activation.

### Discussion

IKBKG is upregulated in CRC cells and its overexpression promotes CRC cell proliferation, migration and invasion by activating the NF-κB pathway-consistent with its oncogenic role in other gastrointestinal cancers<sup>5-7</sup>. Mechanistically, IKBKG stabilizes the IKK complex to accelerate IκBα phosphorylation, releasing p65 to drive inflammatory/oncogenic gene expression<sup>4</sup>, aligning with our data. Limitations include lack of in vivo validation and clinical sample analysis; future studies should explore IKBKG's crosstalk with pathways like Wnt/β-catenin<sup>8</sup>. Targeting IKBKG to inhibit NF-κB signaling may be a promising CRC therapeutic strategy<sup>9,10</sup>.

### Conclusion

IKBKG is upregulated in colorectal cancer cell lines. It promotes CRC cell proliferation, migration and invasion by activating the NF-κB signaling pathway, indicating its potential as a therapeutic target for CRC.

### References

1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209-249.
2. Dekker E, Tanis PJ, Vleugels JLA, et al. Colorectal cancer. Lancet 2019;394(10207):1467-1480.

3. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: The control of NF- $\kappa$ B activity. *Annu Rev Immunol* 2000;18:621-663.
4. Hayden MS, Ghosh S. Shared principles in NF- $\kappa$ B signaling. *Cell* 2008;132(3):344-362.
5. Liu Y, Li J, Zhang H, et al. IKBKG overexpression promotes gastric cancer progression via activating NF- $\kappa$ B signaling. *Oncol Rep* 2022;50(6):268.
6. Chen Y, Li D, Zhang H, et al. IKBKG upregulation correlates with pancreatic cancer cell migration and chemotherapy resistance. *Mol Cell Biochem* 2021;479(6):803-814.
7. Zhao J, Wang C, Li J, et al. IKBKG overexpression promotes colorectal cancer progression by enhancing NF- $\kappa$ B-mediated inflammatory signaling. *Cell Biol Int* 2023;47(11):1445-1454.
8. Wang X, Zhang Y, Li D, et al. Wnt/ $\beta$ -catenin signaling in colorectal cancer: From pathogenesis to therapy. *Signal Transduct Target Ther* 2021;6(1):343.
9. Huang Y, Ye X, Li D, et al. Targeting IKBKG/NF- $\kappa$ B signaling in cancer therapy: Current status and future perspectives. *Drug Des Devel Ther* 2023;17(1):3479-3494.
10. Li M, Zhang H, Wang Y, et al. IKBKG knockdown inhibits colorectal cancer cell invasion via suppressing NF- $\kappa$ B signaling. *Mol Med Rep* 2022;26(6):1490.