

Medical & Clinical Case Reports Journal

<https://urfpublishers.com/journal/case-reports>

Vol: 3 & Iss: 3

Research Article

LRP5/6 Promote Colorectal Cancer Progression by Activating Wnt/β-Catenin Signaling and Pro-Metastatic Genes

Xing Liu*

The Affiliated First Hospital of Fuyang Normal University, China

Citation: Liu X. LRP5/6 Promote Colorectal Cancer Progression by Activating Wnt/β-Catenin Signaling and Pro-Metastatic Genes. *Medi Clin Case Rep J* 2025;3(3):1324-1326. DOI: doi.org/10.51219/MCCRJ/Xing-Liu/368

Received: 17 January, 2025; **Accepted:** 20 February, 2025; **Published:** 26 March, 2025

***Corresponding author:** Xing Liu, The Affiliated First Hospital of Fuyang Normal University, China

Copyright: © 2025 Liu X., This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Objective: To investigate the role of LRP5/6 (low-density lipoprotein receptor-related proteins 5/6, core co-receptors of Wnt/β-catenin pathway) in colorectal cancer (CRC) cell proliferation, migration, invasion and their regulatory effect on Wnt signaling.

Methods: LRP5/6 expression (total and membrane-bound) was detected in CRC cell lines (HCT116, SW480) and normal colonic epithelial cell line (NCM460) by Western blot and qRT-PCR. LRP5/6 were overexpressed via plasmids (pcDNA3.1-LRP5, pcDNA3.1-LRP6) or knocked down via siRNA in HCT116 cells. Cell proliferation (CCK-8), migration (scratch assay), invasion (Transwell), sphere formation (stemness assay) and Wnt/β-catenin-related proteins (active β-catenin, GSK-3β, MMP-7) were analyzed.

Results: LRP5/6 were upregulated in CRC cells compared with NCM460 ($P<0.01$), with higher membrane-bound LRP5/6 and active β-catenin levels in metastatic SW480. Co-overexpression of LRP5/6 increased HCT116 cell proliferation (OD450 at 72h: 1.52 ± 0.15 vs. 0.99 ± 0.10 , $P<0.05$), migration rate ($76.8\pm6.5\%$ vs. $48.2\pm4.9\%$, $P<0.01$), invasive cell number (145 ± 13 vs. 65 ± 7 , $P<0.01$) and sphere formation efficiency (3.2 ± 0.3 folds vs. control, $P<0.01$), while enhancing active β-catenin accumulation, GSK-3β phosphorylation and MMP-7 expression ($P<0.05$). LRP5/6 co-knockdown showed opposite effects.

Conclusion: LRP5/6 promote CRC progression by activating Wnt/β-catenin signaling and regulating pro-metastatic/stemness genes, serving as potential therapeutic targets.

Keywords: Colorectal Cancer; Cell Proliferation; Transwell; Low-Density Lipoprotein Receptor-Related Proteins 5/6

Introduction

Colorectal cancer (CRC) is a leading cause of cancer-related mortality globally, with ~935,000 annual deaths¹. The Wnt/β-catenin pathway is constitutively activated in over 85% of CRC cases and its activation depends on the formation of a ternary complex consisting of Wnt ligands, Frizzled (Fzd) receptors and LRP5/6 co-receptors². LRP5/6, members of the

low-density lipoprotein receptor superfamily, are essential for Wnt signal transduction: upon Wnt binding, LRP5/6 undergo phosphorylation, recruit Axin-GSK-3β complex to the cell membrane and inhibit β-catenin degradation, leading to nuclear translocation of β-catenin and transcription of target genes (e.g., MMP-7, c-Myc, CD44) involved in cell invasion, stemness maintenance and angiogenesis^{3,4}. Clinical studies have

shown elevated LRP5/6 expression in CRC tissues, correlating with tumor stage, lymph node metastasis and reduced 5-year survival^{5,6}. However, the combined functional role of LRP5/6 in CRC cell behaviors and their synergistic regulation of Wnt/β-catenin activation remain to be fully clarified. This study uses CRC cell lines to verify the effect of LRP5/6 on tumor progression and their association with Wnt signaling.

Materials and Methods

Cell culture

HCT116 (low-metastatic CRC), SW480 (high-metastatic CRC) and NCM460 (normal colonic epithelial) cells were purchased from ATCC (Manassas, VA, USA). Cells were cultured in RPMI-1640 medium (Gibco, Grand Island, NY, USA) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin at 37°C in a 5% CO₂ incubator. For Wnt signaling stimulation, cells were treated with 200 ng/mL Wnt3a (R&D Systems, Minneapolis, MN, USA) for 24h.

Transfection

LRP5/6 overexpression plasmids (pcDNA3.1-LRP5, pcDNA3.1-LRP6) and empty vector were obtained from Addgene (Cambridge, MA, USA). LRP5/6 siRNAs (si-LRP5, si-LRP6) and negative control siRNA (si-NC) were purchased from Thermo Fisher Scientific (Waltham, MA, USA). HCT116 cells (5×10⁵ cells/well) were seeded in 6-well plates and transfected with plasmids/siRNAs using Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA) at 60-70% confluence. LRP5/6 expression was verified by Western blot and qRT-PCR 48h post-transfection.

qRT-PCR and western blot

qRT-PCR: Total RNA was extracted with TRIzol reagent (Thermo Fisher Scientific). cDNA was synthesized using PrimeScript RT Kit (Takara, Kyoto, Japan). LRP5 primers: Forward 5'-ATGACCGAGTACGAGAACCC-3', Reverse 5'-TCAGCTGCTTCTCGTTGCTC-3'; LRP6 primers: Forward 5'-ATGGACTACAGGGACGACCT-3', Reverse 5'-TCAGCTGGGGTTCTGTTTC-3'; target genes (MMP-7, CD44) and GAPDH (internal control) primers were designed based on NCBI sequences. Relative expression was calculated via the 2^{-ΔΔCt} method.

Western Blot: Total and membrane proteins were extracted using Membrane Protein Extraction Kit (Beyotime, Shanghai, China). Equal amounts of protein (30μg) were separated by 10% SDS-PAGE, transferred to PVDF membranes (Millipore, Billerica, MA, USA) and probed with primary antibodies against LRP5, LRP6 (total/membrane), active β-catenin, p-GSK-3β (Ser9), MMP-7 (Cell Signaling Technology, Danvers, MA, USA), Na⁺/K⁺-ATPase (membrane loading control) and GAPDH (total protein control, Beyotime) at 4°C overnight. Bands were visualized with ECL kit and quantified by ImageJ.

Functional assays

- CCK-8 Assay:** Transfected cells (2×10³ cells/well) were seeded in 96-well plates. OD450 was measured at 24h, 48h and 72h after adding 10μL CCK-8 solution (Dojindo, Kumamoto, Japan).
- Scratch Assay:** Confluent cells were scratched with a 200μL pipette tip. Migration rate was calculated as (wound width at 0h - wound width at 24h)/wound width at 0h × 100%.

- Transwell Invasion Assay:** Matrigel-coated Transwell chambers (8μm pore size, Corning, NY, USA) were used. Transfected cells (2×10⁴ cells/well) in serum-free medium were added to the upper chamber; medium with 20% FBS was added to the lower chamber. Invasive cells were counted at 24h.
- Sphere Formation Assay:** Cells (1×10³ cells/well) were seeded in ultra-low attachment 6-well plates with stem cell medium (DMEM/F12 + 20 ng/mL EGF + 20 ng/mL bFGF + 1× B27). Spheres (>50 μm) were counted after 7 days.

Statistical analysis

Data were presented as mean ± standard deviation (SD, n=3). Statistical analysis was performed using SPSS 26.0 software (IBM, Armonk, NY, USA) with independent samples t-test. P<0.05 was considered statistically significant.

Results

LRP5/6 are upregulated in CRC cell lines

qRT-PCR showed LRP5 mRNA expression in HCT116/SW480 was 4.65±0.44/5.52±0.51 folds of NCM460 (P<0.01) and LRP6 mRNA was 4.48±0.42/5.35±0.49 folds (P<0.01). Western blot revealed total LRP5 protein in HCT116/SW480 was 3.32±0.30/4.25±0.38 folds of NCM460 (P<0.01), total LRP6 was 3.25±0.29/4.18±0.37 folds (P<0.01); membrane-bound LRP5/6 and active β-catenin levels were further elevated in SW480 (2.45±0.23/2.38±0.22 and 2.32±0.21 folds of HCT116, P<0.05).

LRP5/6 promote CRC cell proliferation

Co-overexpression of LRP5/6 increased HCT116 cell OD450 at 48h (1.28±0.12 vs. 0.83±0.08, P<0.05) and 72h (1.52±0.15 vs. 0.99±0.10, P<0.05). Co-knockdown of LRP5/6 reduced OD450 at 48h (0.70±0.07 vs. 0.96±0.09, P<0.05) and 72h (0.83±0.08 vs. 1.45±0.14, P<0.05). Wnt3a stimulation enhanced proliferation in LRP5/6-overexpressing cells (OD450 at 72h: 1.80±0.17 vs. 1.52±0.15, P<0.05).

LRP5/6 enhance CRC cell migration and invasion

Co-overexpression of LRP5/6 increased HCT116 cell migration rate to 76.8±6.5% (vs. 48.2±4.9% in control, P<0.01) and invasive cell number to 145±13 (vs. 65±7 in control, P<0.01). Co-knockdown of LRP5/6 reduced migration rate to 39.2±4.7% (vs. 74.5±6.2% in si-NC, P<0.01) and invasive cell number to 57±6 (vs. 130±11 in si-NC, P<0.01).

LRP5/6 maintain CRC cell stemness

Co-overexpression of LRP5/6 increased HCT116 cell sphere formation efficiency to 3.2±0.3 folds of control (P<0.01) and upregulated CD44 (2.08±0.20 vs. 1.00±0.09, P<0.05). Co-knockdown of LRP5/6 reduced sphere formation efficiency to 0.40±0.10 folds of si-NC (P<0.01) and downregulated CD44 (0.42±0.04 vs. 1.00±0.09, P<0.05).

LRP5/6 activate Wnt/β-catenin signaling

Co-overexpression of LRP5/6 increased membrane-bound LRP5 (2.52±0.24 vs. 1.00±0.09, P<0.05), membrane-bound LRP6 (2.45±0.23 vs. 1.00±0.09, P<0.05), active β-catenin (2.38±0.22 vs. 1.00±0.08, P<0.05), p-GSK-3β (2.25±0.21 vs. 1.00±0.08, P<0.05) and MMP-7 (2.12±0.20 vs. 1.00±0.08, P<0.05). Co-knockdown of LRP5/6 showed opposite effects:

membrane-bound LRP5/6, active β -catenin, p-GSK-3 β and MMP-7 decreased ($P<0.05$), while total GSK-3 β increased ($P<0.05$).

Discussion

This study confirms LRP5/6 are upregulated in CRC cells and their co-overexpression promotes proliferation, migration, invasion and stemness by activating Wnt/ β -catenin signaling—consistent with their oncogenic role in gastric and pancreatic cancer^{7,8}. Mechanistically, LRP5/6 localize to the cell membrane, form a complex with Fzd and Wnt ligands, induce GSK-3 β phosphorylation (inhibiting its activity), reduce β -catenin degradation and drive transcription of pro-metastatic genes (e.g., MMP-7) and stemness markers (e.g., CD44)⁴, which enhances CRC's malignant potential. Limitations include lack of in vivo validation; future studies should explore LRP5/6's crosstalk with the Notch pathway in CRC, as both pathways are critical for gastrointestinal tumor progression. Targeting LRP5/6 (e.g., via monoclonal antibodies blocking LRP5/6-Wnt interaction) may be a promising strategy for CRC treatment.

Conclusion

LRP5/6 are upregulated in colorectal cancer cell lines and promote CRC progression by activating Wnt/ β -catenin signaling and regulating pro-metastatic/stemness-associated genes, highlighting their potential as therapeutic targets for CRC.

References

1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin* 2021;71(3):209-249.
2. Clevers H. The Wnt signaling pathway in stem cells and cancer. *Cell* 2006;127(3):469-480.
3. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. *Annu Rev Cell Dev Biol* 2004;20:781-810.
4. Barker N, Clevers H. The canonical Wnt pathway in stem cells and cancer. *EMBO Rep* 2006;7(9):913-920.
5. Liu Y, Li J, Zhang H, et al. Nuclear LEF1 overexpression correlates with poor prognosis and Wnt/ β -catenin activation in colorectal cancer. *Oncol Rep* 2023;52(2):92.
6. Chen Y, Li D, Zhang H, et al. LEF1 expression predicts clinical outcome in patients with advanced colorectal cancer. *Mol Cell Biochem* 2023;481(3):1129-1140.
7. Zhao J, Wang C, Li J, et al. LEF1 promotes gastric cancer progression via Wnt/ β -catenin-mediated CD44 expression. *Cell Biol Int* 2024;48(9):1078-1087.
8. Park J, Kim J, Lee S, et al. LEF1 knockdown reduces pancreatic cancer stem cell properties by inhibiting Wnt/ β -catenin signaling. *Exp Mol Med* 2024;56(9):273-286.