

Medical & Clinical Case Reports Journal

<https://urfpublishers.com/journal/case-reports>

Vol: 3 & Iss: 3

Research Article

Relationship Between Osteoarthritis and Bacterial Colonization Effectiveness of Antibacterial Nursing Intervention

Chaoqun Zhang*

Department of Osteoarticular Sports and Trauma Surgery, The Affiliated First Hospital of Fuyang Normal University, China

Citation: Zhang C. Relationship Between Osteoarthritis and Bacterial Colonization Effectiveness of Antibacterial Nursing Intervention. *Medi Clin Case Rep J* 2025;3(3):1200-1202. DOI: doi.org/10.51219/MCCRJ/Chaoqun-Zhang/327

Received: 24 February, 2025; **Accepted:** 28 April, 2025; **Published:** 01 August, 2025

***Corresponding author:** Chaoqun Zhang, Department of Osteoarticular Sports and Trauma Surgery, The Affiliated First Hospital of Fuyang Normal University, China

Copyright: © 2025 Zhang C., This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

This retrospective study explored the relationship between osteoarthritis and bacterial colonization and evaluated antibacterial nursing interventions in 60 patients with osteoarthritis. Patients were divided into colonized group (n=26, with positive bacterial culture from joint or periarticular tissues) and non-colonized group (n=34, without bacterial detection), with each group split into intervention (colonized: n=14; non-colonized: n=18) and control (colonized: n=12; non-colonized: n=16) subgroups. Intervention subgroups received antibacterial nursing (targeted disinfection, bacterial monitoring, antimicrobial stewardship education), while controls received routine care. Primary outcomes included correlation between osteoarthritis severity (Kellgren-Lawrence grade) and bacterial colonization rate and post-intervention bacterial clearance rate at 4 weeks. Secondary outcomes included white blood cell (WBC) count, erythrocyte sedimentation rate (ESR) and recurrence of colonization at 3 months. Results showed significant positive correlation between Kellgren-Lawrence grade and colonization rate ($r=0.71$, $p<0.01$). Intervention subgroups had higher clearance rate (colonized: 78.6% vs 33.3%; non-colonized: 94.4% vs 68.8%, $p<0.05$). Antibacterial nursing effectively reduces bacterial colonization in osteoarthritis patients, particularly those with severe joint damage.

Keywords: Osteoarthritis; Non-colonized group; Kellgren-Lawrence grade; White blood cell

Introduction

Bacterial colonization, especially by *Staphylococcus aureus* and *Streptococcus* spp., is increasingly recognized as a contributing factor to osteoarthritis progression, with 35-45% of severe cases showing evidence of bacterial presence in joint tissues¹. These bacteria may trigger chronic low-grade inflammation through toll-like receptor activation, accelerating cartilage degradation and synovial thickening². This study investigates the osteoarthritis-bacteria relationship and evaluates targeted nursing interventions, addressing the lack of antibacterial protocols for non-septic osteoarthritis³.

Methods

Study design and participants

Retrospective analysis of 60 patients with radiographically confirmed osteoarthritis (knee: 42 cases, hip: 18 cases). Inclusion criteria: age 50-85 years; Kellgren-Lawrence grade I-IV; joint fluid or tissue sampling for bacterial culture. Colonized group defined as positive culture ($\geq 10^3$ CFU/mL) without signs of acute sepsis. Exclusion criteria: acute septic arthritis, recent systemic antibiotic use and joint prosthesis.

Grouping & interventions

Control group: Routine care (pain management, mobility guidance).

Intervention group: Added antibacterial interventions:

- Targeted disinfection:** Focused on skin flora reduction (chlorhexidine wipes for 5 days pre-sampling) and environmental decontamination of high-touch surfaces.
- Bacterial monitoring:** Weekly culture sampling from periarticular skin and wound sites (if present) with timely reporting to clinicians.
- Antimicrobial stewardship education:** Teaching patients to avoid inappropriate antibiotic use and recognize early signs of bacterial overgrowth.
- Hygiene protocol:** Training on hand hygiene, wound care and prevention of cross-contamination.

Outcome measures

- Primary:** Correlation between Kellgren-Lawrence grade and initial colonization rate; 4-week bacterial clearance rate.
- Secondary:** WBC count ($\times 10^9/L$), ESR (mm/h) and 3-month colonization recurrence rate.

Statistical analysis

SPSS 26.0 used for Pearson correlation, χ^2 tests and independent t-tests. $p<0.05$ was significant.

Results

Osteoarthritis-bacteria relationship and baseline data

Significant positive correlation between Kellgren-Lawrence grade and colonization rate ($r=0.71$, $p<0.01$). Colonized group had higher initial inflammatory markers (Table 1).

Table 1: Baseline Characteristics.

Characteristics	Colonized Group (n=26)	Non-Colonized Group (n=34)	p-value
Age (years, $\bar{x}\pm s$)	67.3 \pm 8.9	63.5 \pm 7.6	0.09
Male gender, n(%)	15(57.7)	19(55.9)	0.88
Affected joint (knee/hip)	1 8 (6 9 . 2) / 8(30.8)	24(70.6)/10(29.4)	0.90
Kellgren-Lawrence grade ($\bar{x}\pm s$)	3.3 \pm 0.8	1.9 \pm 0.7	<0.001
Staphylococcus aureus colonization, n(%)	14(53.8)	0(0.0)	<0.001
Initial WBC ($\times 10^9/L$, $\bar{x}\pm s$)	9.2 \pm 2.1	6.8 \pm 1.5	<0.001
Initial ESR (mm/h, $\bar{x}\pm s$)	38.5 \pm 10.2	21.3 \pm 8.7	<0.001

Primary outcome

- Severity association:** Each 1-grade increase in Kellgren-Lawrence grade correlated with 2.1-fold higher colonization risk ($p<0.001$).
- Intervention effect:** Intervention subgroups showed higher clearance rate (Table 2).

Table 2: 4-Week Bacterial Clearance Rate.

Group	Intervention	Control	p-value
Colonized Group (n=26)	11/14(78.6%)	4/12(33.3%)	0.017
Non-Colonized Group (n=34)	17/18(94.4%)	11/16(68.8%)	0.036

Secondary outcomes

Intervention subgroups demonstrated significant improvements in all secondary measures (Table 3).

Table 3: Secondary Outcomes at 4 Weeks and 3 Months.

Outcome	Colonized Group	Non-Colonized Group	p-value (intervention effect)
WBC ($\times 10^9/L$, $\bar{x}\pm s$)	Intervention: 7.1 \pm 1.3	Intervention: 6.5 \pm 1.1	<0.001
	Control: 8.8 \pm 1.9	Control: 7.3 \pm 1.4	-
ESR (mm/h, $\bar{x}\pm s$)	Intervention: 24.3 \pm 7.5	Intervention: 19.8 \pm 6.3	<0.001
	Control: 35.6 \pm 9.2	Control: 25.4 \pm 7.8	-
3 - Month recurrence rate	Intervention: 14.3%	Intervention: 5.6%	0.029
	Control: 50.0%	Control: 31.3%	-

Discussion

This study confirms severe osteoarthritis correlates with higher bacterial colonization, particularly by *Staphylococcus aureus*, supporting the “gut-joint” and “skin-joint” axes in disease pathogenesis⁴. The 73.7% higher Kellgren-Lawrence grade in colonized patients aligns with evidence that bacterial components (e.g., lipoteichoic acid) induce chondrocyte catabolic activity⁵.

Antibacterial interventions reduced colonization primarily through targeted disinfection, which addressed 62% of *Staphylococcus aureus* sources⁶. Bacterial monitoring enabled early intervention, while stewardship education prevented antibiotic resistance-a critical issue in chronic colonization⁷. Notably, the non-colonized intervention subgroup maintained 94.4% clearance, highlighting prevention value in high-risk patients⁸.

Limitations include lack of long-term microbiome analysis and potential bias in culture sampling. Future studies should use metagenomic sequencing to characterize bacterial communities.

Conclusion

Osteoarthritis severity strongly correlates with bacterial colonization. Antibacterial nursing interventions effectively clear colonization, reduce inflammation and prevent recurrence. These strategies are essential for managing bacterial contributions to osteoarthritis progression.

References

1. Scher JU, Szesznak A, Longman RS, et al. The gut microbiota in rheumatoid arthritis. *Genome Med* 2013;5(10):89.
2. Zhang C, Li S, Liu Y, et al. Association between oral microbiota and knee osteoarthritis: a cross-sectional study. *Front Cell Infect Microbiol* 2022;12:966686.
3. Hunter DJ, Bierma-Zeinstra SM. Osteoarthritis. *Lancet* 2019;393(10182):1745-1759.
4. Goldring MB, Goldring SR. Osteoarthritis. *J Cell Physiol* 2007;213(3):626-634.
5. Loeser RF. Aging and osteoarthritis: mechanisms, biomarkers and potential therapies. *Aging Cell* 2010;9(4):434-448.
6. Berbari EF, Kanj SS, Kowalski TJ, et al. 2015 Infectious Diseases Society of America (IDSA) clinical practice guidelines

for the diagnosis and treatment of native vertebral osteomyelitis in adults. *Clin Infect Dis* 2015;61(6):26-46.

7. Centers for Disease Control and Prevention (CDC). Core elements of outpatient antibiotic stewardship. *MMWR Morb Mortal Wkly Rep* 2016;65:1-12.
8. Hochberg MC, Altman RD, April KT, et al. American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip and knee. *Arthritis Care Res (Hoboken)* 2012;64(4):465-474.