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ABSTRACT

Aging is a complex biological process marked by a progressive decline in physiological functions and structural integrity at
the cellular and tissue levels, driven by hallmarks such as genomic instability, telomere shortening, mitochondrial dysfunction
and disrupted epigenetic regulation. These interconnected mechanisms increase susceptibility to age-related diseases, including
neurodegenerative disorders, cardiovascular conditions, metabolic syndromes and osteoporosis, imposing significant health and
economic burdens. Recent advances have demonstrated that aging is a dynamic and modifiable process, opening avenues for
targeted interventions aimed at enhancing healthspan and addressing the underlying causes of age-related conditions. Virtual
screening (VS), a high-throughput computational approach, has emerged as a transformative tool in aging research, enabling
the eflicient identification of bioactive compounds by targeting key pathways such as mTOR, SIRT1 and AMPK. Compared to
traditional experimental methods, VS enhances efficiency, reduces costs and supports the exploration of multitarget strategies and
epigenetic regulation. By accelerating the discovery of novel molecular targets and therapeutic agents, VS provides a systematic
framework for understanding the molecular underpinnings of aging and developing innovative anti-aging interventions. As
the global aging population continues to grow, the integration of VS into aging research holds the potential to revolutionize
drug discovery and therapeutic development, addressing the root causes of aging and improving health outcomes for aging
populations worldwide.
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1. Introduction

Aging, characterized by a decline in physiological functions
and cellular structural changes, is a significant precursor to
various pathological conditions, including neurodegenerative
and cardiovascular diseases'?. This review explores the role
of virtual screening (VS) in identifying molecular targets and
pathways associated with aging, offering a potential strategy
to delay or reverse the aging process®. VS, a computer-assisted
technology, has emerged as a powerful tool in drug discovery,
particularly in the context of aging research, where it targets
complex molecular networks such as the mTOR, SIRT1 and
AMPK signaling pathways®. The technology’s efficiency in

high-throughput computing allows for the rapid identification
of potential active compounds, streamlining the process of drug
development and reducing associated costs'~.

This review provides an overview of the foundational
principles and techniques employed in Virtual Screening (VS),
encompassing both Structure-Based Virtual Screening (SBVS)
and Ligand-Based Virtual Screening (LBVS)’. It discusses the
unique benefits of each approach and examines the significance
of molecular docking and scoring functions in the context of
forecasting interactions between compounds and their targets.
The discussion also encompasses the advantages of VS, such as
its high throughput and efficiency and its limitations, particularly
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regarding the accuracy of predictive models and computational
resource requirements®. Furthermore, the review underscores
the importance of database resources like ZINC, PubChem and
protein structure databases in facilitating VS’#. It also addresses
the challenges and future trends in VS, including the potential
of deep learning, multi-omics data integration and the efficient
integration of virtual screening with experimental validation to
enhance the drug discovery process®!".

The role of VS in aging research is further exemplified by
studies that have used QSAR modeling and molecular docking
to identify novel bioactive peptides with antioxidant properties,
which are crucial in delaying aging. Additionally, the potential
of VS in drug discovery is highlighted by its application in
identifying BACE] inhibitors for the management of Alzheimer’s
disease, a neurodegenerative condition closely associated with
aging'>*. The review also points to the growing importance of
multi-omics data in understanding epigenetic aging and human
longevity, which can guide VS efforts'. The integration of deep
learning with VS is seen as a significant development, with
the potential to improve the accuracy and efficiency of virtual
screening campaigns*%-32,

2. Virtual Screening Technology
2.1 Basic Principles and Methods

Virtual screening (VS) is a computer-assisted molecular
screening technology that predicts the potential biological
activity of compounds by simulating their interactions with
biological targets®. This technique has become a crucial step
in the early stages of drug discovery, offering a cost-effective
alternative to high-throughput screening (HTS) methods.***
VS allows for the automatic evaluation of large databases of
molecular structures using computational methods, with the
aim of identifying molecules more likely to bind to a molecular
target, typically a protein or enzyme receptor®*-*.

The process of VS acts as a filter, reducing the number of
candidate molecules that may become a drug to a smaller subset
than the initial number’®¥. This filtering helps in selecting
compounds with a higher probability of presenting biological
activity against a target of interest and eliminates those that
may be toxic or have unfavorable pharmacodynamic and
pharmacokinetic properties®®. By doing so, biological assays are
performed only with the most promising molecules, leading to
lower costs and shorter development times*.

2.1.1 Structure-Based Virtual Screening (SBVS): Structure-
Based Virtual Screening (SBVS) relies on known three-
dimensional structural information of targets. It simulates the
binding mode between compounds and targets through molecular
docking techniques and evaluates their binding strength based
on scoring functions. This method is particularly suitable for
situations where the target structure is known and the active
pocket is clear, making it widely used for screening potential
ligands for enzymes, receptors and other proteins®. SBVS has
been revolutionized by advancements in structural biology,
with technologies like cryo-electron microscopy providing
high-resolution structures for a majority of clinically relevant
targets®. These structures often capture the target protein in
states relevant to its biological function, providing valuable
templates for ligand screening and lead optimization.

2.1.2 Ligand-Based Virtual Screening (LBVS): Ligand-Based
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Virtual Screening (LBVS) is based on the structural features
of known active compounds, using chemical similarity or
pharmacophore models to predict the activity of new molecules.
Unlike SBVS, LBVS does not require target structure information
and is suitable for situations where the target structure is unknown
or not yet resolved. However, it requires a reliable reference
ligand dataset’”*!. LBVS has been enhanced by the expansion
of drug-like chemical space, with ultra-large virtual libraries and
chemical spaces of drug-like compounds now accessible for hit
and lead discovery. This approach is particularly beneficial when
the structural information of the target protein is not available or
when the target is challenging to crystallize.

2.1.3 The Role of Molecular Docking and Scoring Functions:
Molecular docking is one of the core steps in virtual screening,
predicting the binding pose and affinity of compounds by
simulating their binding modes in the target’s active site.
Scoring functions are used to quantify the binding energy
between compounds and targets to distinguish potential active
molecules from inactive ones. Scoring functions can be broadly
categorized into those that estimate van der Waals interactions
and those that estimate electrostatic interactions®*?’. However,
existing scoring functions still have certain limitations in terms
of accuracy and computational efficiency. Advances in machine
learning and deep learning methods are being integrated
into scoring functions to improve their predictive power and
discrimination of true binders from non-binders. These methods
learn the interlink between the physicochemical properties and
the interactions between protein and ligand from known binding
complexes and implement statistical methods to predict the
interactions of unknown protein-ligand complexes. Despite
these advances, there is still room for improvement and future
enhancements may involve the integration of GPU acceleration
and deep learning models for more efficient pose generation and
improved scoring?®.

2.2 Common Tools and Platforms of VS

The application of virtual screening technology relies
on a variety of efficient software tools that play a key role in
molecular docking and modeling. Among them, AutoDock is an
open-source molecular docking tool, widely used in structural
biology and drug screening research due to its flexibility and
efficiency, especially popular in academic research®. Schrodinger
provides a comprehensive drug discovery solution, covering
high-precision molecular docking, pharmacophore modeling
and free energy calculations, making it one of the mainstream
choices in the pharmaceutical industry and academia. MOE
(Molecular Operating Environment) is an integrated molecular
modeling platform, combining molecular docking, dynamic
simulation and data analysis, suitable for various scenarios
from basic research to applied development. These classic tools
provide strong technical support for the efficiency and reliability
of virtual screening, promoting the progress of anti-aging drug
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research and target discovery®.
2.3 Advantages and Limitations

2.3.1 Advantages: Virtual screening technology has
revolutionized the field of anti-aging drug development and
research, offering a multitude of benefits that enhance efficiency
and throughput. Virtual screening can process millions of
compounds in a short time, significantly reducing the time and
cost associated with traditional experimental screening. This is
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crucial in aging research where the need to test a vast array of
compounds for potential anti-aging properties is ever-present®->’,

It quickly identifies candidate molecules with potential
activity, providing a clear direction for subsequent experimental
validation. This is particularly beneficial for anti-aging drugs,
which often require extensive validation due to the complex
nature of aging processes. By efficiently identifying potential
active molecules, virtual screening avoids unnecessary waste
of manpower and materials in experiments. This is especially
important in aging research where resources can be better
utilized for detailed study of promising candidates.

Virtual screening is applicable to various target types
and molecules with different chemical properties, making it
invaluable in anti-aging research where complex signaling
pathways and multiple molecular targets are involved. Especially
in the early stages of drug discovery, virtual screening can
handle targets that have not been fully resolved, optimizing
drug-like properties based on existing active molecules'’. This is
crucial for aging research where many targets, particularly those
involved in complex pathways like mTOR and AMPK, are still
not fully understood.

By quickly screening compounds targeting key pathways,
virtual screening promotes the exploration of aging mechanisms
and the formulation of intervention strategies. This has led to
the discovery of novel compounds with anti-aging potential,
such as natural products that inhibit BACEI, a key enzyme in
Alzheimer’s disease pathogenesis. Also, the integration of virtual
screening with deep learning and other advanced computational
algorithms has improved the accuracy and efficiency of the
technology, providing strong technical support for biomedical
research and drug development. This is particularly relevant in
aging research where the complexity of targets like G protein-
coupled receptors (GPCRs) and other membrane proteins
requires sophisticated computational approaches.

Virtual Screening can enhance Chemical Space Exploration.
The expansion of drug-like chemical space has allowed for hit
and lead discovery with ultra-large virtual libraries, growing
beyond billions of compounds. This vast chemical space offers
unprecedented opportunities for finding novel anti-aging
compounds?.

Virtual screening has been successful in identifying inhibitors
for specialized targets like BACE1, which is highly expressed in
the brain and plays a pivotal role in Alzheimer’s disease. This
demonstrates the technology’s potential in targeting specific
pathways associated with aging. The combination of physics-
based and data-driven approaches in virtual screening has shown
promise in overcoming individual limitations and enhancing the
discovery of anti-aging drugs®. This synergy can lead to more
accurate predictions and a better understanding of complex
aging mechanisms.

2.3.2. Limitations

Despite the numerous advantages, virtual screening does
have limitations, particularly in the context of aging research:

The success of SBVS depends on the quality of the target’s
three-dimensional structure, while LBVS relies on the reliability
of known active compounds. Deviations in these predictive
models may lead to inaccurate screening results. High-precision
virtual screening often requires significant computational
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resources, especially when integrating dynamic simulations
and large compound libraries. This can be a barrier for research
groups with limited access to such resources.

Deep learning models, which are increasingly being used
in virtual screening, are very data-greedy. The performance of
these models is highly dependent on the size and quality of the
training data. In aging research, obtaining large, high-quality
datasets can be challenging. Data-driven methods may struggle
to generalize beyond data-rich classes of targets, which can limit
their applicability in aging research where some targets may not
be as well-studied.

Deep learning models, especially those based on limited
datasets lacking negative data, are prone to overtraining and
spurious performance, sometimes leading to biased results.
This can affect the reliability of virtual screening in identifying
effective anti-aging compounds®.

3. Molecular Mechanisms and Targets Related to Aging
3.1 Molecular Pathways Related to Aging

The aging process involves multiple complex molecular
pathways, among which ROS, mTOR and AMPK signaling
pathways play a key role in regulating cellular functions and
the aging process. Reactive oxygen species (ROS) are important
mediators in aging and their abnormal changes directly affect
cell fate. When ROS are overproduced, they can cause oxidative
stress, leading to damage to DNA, proteins and lipids, thereby
accelerating cellular aging and tissue functional degradation®.
However, ROS also has a dual role; moderate levels of ROS
can act as signaling molecules, activating cellular protective
mechanisms, such as stimulating the expression of antioxidant
genes. This complex mechanism makes the precise regulation of
ROS an important focus in anti-aging research.

Another important pathway is mTOR (mammalian target
of rapamycin), which, as a key kinase regulating cell growth,
protein synthesis and energy metabolism, plays a significant
role in the aging process. Studies have shown that excessive
activation of mTOR is closely related to aging and various related
diseases. Drugs that inhibit mTOR (such as Rapamycin) have
shown anti-aging effects in various model organisms, becoming
an important direction for anti-aging intervention. At the same
time, AMPK (AMP-activated protein kinase), as a sensor of
cellular energy status, also plays a central role in regulating the
aging process. The activation of AMPK can not only inhibit
the mTOR signaling pathway but also enhance autophagy and
improve mitochondrial function, thereby delaying cellular and
tissue aging*’.

In addition to these signaling pathways, epigenetic
modifications also play a crucial role in the aging process.
The temporal changes in DNA methylation are considered a
“biological clock™ that can reflect an individual’s biological age
and provide a basis for assessing the degree of aging. In addition,
histone deacetylases (such as SIRT1) play an important role in
regulating gene expression and maintaining genomic stability™.
The dysfunction of SIRT1 is considered one of the key drivers
of aging. In summary, the regulation of signaling pathways and
epigenetics is involved in the occurrence and development of
aging, providing a rich set of molecular targets for studying aging
mechanisms and developing anti-aging intervention measures.
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3.2 Screening of Key Targets

Intervention measures against aging depend on the precise
screening and validation of molecular targets, which is key to
developing anti-aging drugs and intervention strategies. Current
research indicates that multiple molecular targets play a core
role in delaying aging and related pathological changes, among
which SIRT1, NRF2 and FOXO are particularly important.
SIRT1 is an NAD"-dependent deacetylase that, by regulating
key proteins such as FOXO and p53, plays an important role
in improving cellular stress tolerance, enhancing DNA repair
and maintaining energy metabolism balance. SIRT1 activates
the FOXO transcription factor, promoting the expression of
antioxidant genes while inhibiting pro-apoptotic signals, thus
protecting cells from oxidative stress and damage®'.

In addition, SIRT1 shows potential for delaying aging in
regulating mitochondrial function and lipid metabolism and its
agonists have been verified in various model organisms to extend
lifespan. NRF2 (nuclear factor erythroid 2-related factor 2) is
the main regulator of cellular antioxidant defense, activating the
expression of antioxidant enzyme genes to reduce the damage of
reactive oxygen species (ROS) to cells. Under normal conditions,
NRF?2 is regulated by the inhibitory protein Keapl, but under
oxidative stress, NRF2 is released and transferred to the nucleus,
initiating the expression of antioxidant enzymes such as HO-1
and NQOI, thereby enhancing cellular antioxidant capacity and
reducing inflammation and mitochondrial dysfunction®.

FOXO (forkhead transcription factor), as a downstream
effector molecule of multiple signaling pathways (such as the
insulin/IGF-1 pathway), plays an important role in delaying
aging and maintaining cellular homeostasis by regulating
antioxidant responses, autophagy, DNA repair and cell cycle
processes. FOXO can induce the expression of antioxidant
enzymes and DNA repair enzymes, reduce the accumulation of
ROS and improve cellular function by promoting autophagy to
clear damaged organelles'®.

4. Application of Virtual Screening Technology in Aging
Research

Virtual screening (VS) has become a transformative tool in
aging research, addressing the complexities of drug discovery
for age-associated diseases and interventions aimed at slowing
the aging process. Leveraging computational methods, VS
facilitates the rapid identification of bioactive compounds
targeting key pathways, such as mTOR, SIRT1 and AMPK.
Below, the diverse applications of VS in aging research are
explored in depth.

4.1 Discovery of Small Molecule Anti-Aging Compounds

Virtual screening has proven highly effective in identifying
small molecules with anti-aging properties. For example,
computational efforts have pinpointed SIRT1 activators,
such as resveratrol analogs, that modulate the activity of this
key deacetylase involved in stress resistance and metabolic
regulation. Studies like those by Sun et al. (2016) utilized
ligand-based virtual screening to identify SIRT1 inhibitors
within natural product databases, providing promising leads
for pharmaceutical development®. Similarly, BACE! inhibitors
have been identified for combating Alzheimer’s disease, a
neurodegenerative condition closely linked to aging. Gheidari
et al. (2024) demonstrated how structure-based virtual screening
combined with molecular docking and ADMET predictions could
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uncover potential inhibitors with optimized pharmacokinetic
profiles®.

4.2 Targeting Specific Pathways in Aging

The application of VS in aging research often focuses on
specific molecular pathways. For instance, the mTOR signaling
pathway, a regulator of cellular growth and metabolism, is a
well-established target for anti-aging interventions. Rapamycin,
an mTOR inhibitor, has been widely studied for its lifespan-
extending effects™. Virtual screening has played a pivotal role
in designing rapamycin derivatives, such as everolimus, which
offer enhanced pharmacokinetics and reduced side effects.
Similarly, AMPK activators identified through VS hold promise
for promoting autophagy and mitigating cellular aging. Zhang
et al. (2016) highlighted the use of VS in screening AICAR
analogs, which demonstrated significant effects on cellular
energy homeostasis and lifespan extension in model organisms®'.

4.3 Database Resources Supporting VS in Aging Research

The efficiency and success of VS in aging research are
underpinned by comprehensive databases that provide rich
repositories of chemical compounds and target structures:
Compound Libraries include: ZINC: A freely available database
hosting millions of drug-like molecules, enabling high-throughput
screening for potential therapeutic candidates™.PubChem:
Maintained by NCBI, this extensive database includes tens of
millions of chemical entities, providing a wealth of information
for ligand-based virtual screening®. Protein Structure Databases
include: PDB: Offers experimentally resolved protein structures
that are instrumental for structure-based docking studies.
AlphaFold: By predicting protein structures with high accuracy
using deep learning, AlphaFold expands the scope of VS,
particularly for previously uncharacterized targets involved in
aging®.

4.4 Multi-Scale Modeling Integration in Aging Research

Virtual screening has transcended its initial role as a molecular
filtering tool, integrating with multi-scale modeling to connect
molecular findings to systemic biological effects. Molecular
dynamics simulations validate the stability of compound-target
interactions identified through VS, elucidating their potential
mechanisms of action within cellular environments. Such
approaches have proven invaluable in confirming the efficacy
of mTOR?.Systems biology models incorporate VS data into
broader frameworks, enabling predictions of how compounds
modulate entire biological networks. For example, integrating
mTOR inhibitors into metabolic models has provided insights
into their effects on energy balance and organismal aging.

4.5. Applications in Multi-Target Drug Discovery

Aging is characterized by interconnected molecular
pathways, necessitating multi-target approaches in drug
design. Virtual screening has been instrumental in identifying
compounds that act on multiple targets simultaneously''. For
example, dual-action molecules targeting both mTOR inhibition
and NRF2 activation have shown promise in preclinical aging
studies. These compounds leverage the interplay between
metabolic regulation and antioxidant defenses to address aging
more comprehensively.

4.6. Integration of VS with Emerging Technologies

The synergy between VS and emerging technologies like
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deep learning and multi-omics is transforming aging research.
Machine learning algorithms enhance the predictive accuracy of
VS, enabling the identification of novel bioactive compounds
with greater efficiency. Additionally, multi-omics data integration
provides a more holistic view of aging processes, guiding the
selection of drug targets and informing compound optimization®.

Through these diverse applications, virtual screening
continues to revolutionize aging research by accelerating drug
discovery and expanding our understanding of the molecular
mechanisms underpinning aging. As the technology evolves, its
role in developing effective anti-aging therapies will undoubtedly
grow, offering new hope for addressing the challenges posed by
an aging global population.

5. Challenges and Future Directions in Virtual
Screening for Aging Research

5.1 Complexity and Diversity of the Aging Process

Aging is an intricate biological phenomenon resulting from
the interplay of multiple molecular pathways, diverse cell types
and complex biological networks. The heterogeneity of aging
processes presents significant challenges for drug discovery and
target identification. For instance, the rate and characteristics
of aging differ markedly across tissues organs and individuals,
introducing variability that complicates the design of universal
therapeutic strategies. While certain tissues, such as the brain
and cardiovascular system, exhibit pronounced vulnerability to
age-related decline, others may demonstrate more resilience.
These disparities arise from differences in metabolic activity,
regenerative capacity and exposure to environmental stressors,
among other factors.

Adding to the complexity, key signaling pathways implicated
in aging, such as reactive oxygen species (ROS), AMPK and
mTOR, may exhibit context-dependent or even contradictory
functions. ROS, for example, can act as damaging agents at
high levels, promoting oxidative stress and cellular damage,
but they also serve as signaling molecules at physiological
levels, triggering protective responses. Similarly, mTOR, which
drives growth and protein synthesis, can be detrimental when
hyperactivated in aging contexts but essential for tissue repair
and immune responses in others. These dual and sometimes
conflicting roles pose substantial challenges for precise targeting,
requiring nuanced therapeutic approaches that balance activation
and inhibition depending on the biological context.

Furthermore, the interdependence of aging-related pathways
complicates drug design. Interventions targeting a single
pathway may inadvertently affect others, potentially leading
to unintended side effects or diminishing therapeutic efficacy.
For example, inhibiting mTOR might promote autophagy and
longevity but could simultaneously impair anabolic processes
essential for tissue maintenance. This intricate network of
interactions necessitates the development of multitarget
strategies or pathway-specific modulation to achieve effective
and context-appropriate outcomes.

5.2 Incompleteness and Bias in Biological Data

A significant obstacle in virtual screening for aging research
is the incompleteness and bias inherent in existing biological
data. High-quality, comprehensive datasets are essential for
the accuracy and reliability of virtual screening models, yet
substantial gaps remain in available information. For example,
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the coverage of three-dimensional protein structures in databases
such as the Protein Data Bank (PDB) is far from exhaustive.
Many aging-relevant proteins, particularly those with transient
or intrinsically disordered regions, remain unresolved or poorly
characterized, limiting the applicability of structure-based
virtual screening (SBVS).

Moreover, the datasets used for ligand-based virtual
screening (LBVS) are often derived from experimentally
validated active compounds, which may not capture the full
chemical or biological diversity of potential ligands. This
reliance on historical data introduces biases that can skew
screening results toward well-studied targets while neglecting
less-explored but potentially critical pathways. Additionally,
data quality issues, such as inconsistencies in experimental
conditions, sample heterogeneity and reporting standards,
further exacerbate inaccuracies and reduce reproducibility. For
instance, compounds that show promising in silico results may
fail during in vitro or in vivo validation due to discrepancies in
binding affinity, bioavailability or toxicity.

Efforts to address these limitations include the expansion of
databases to incorporate more comprehensive protein structures
and diverse chemical libraries. Advances in experimental
techniques, such as cryo-electron microscopy and AlphaFold,
are beginning to close the structural gap by resolving previously
inaccessible protein conformations. Concurrently, integrating
multi-omics datasets, including proteomics, transcriptomics and
metabolomics, can provide richer and more nuanced biological
context for target selection and validation.

5.3 Model Interpretability and Practical Verification
Difficulties

While wvirtual screening offers substantial efficiency
advantages, the interpretability of its predictive models remains
a critical limitation. The algorithms underlying virtual screening,
including molecular docking and scoring functions, often fail
to fully capture the complexities of molecular interactions. For
example, current scoring functions primarily focus on estimating
binding energy through simplified representations of van der
Waals forces, hydrogen bonding and electrostatic interactions.
These approximations, while computationally efficient, may
overlook critical factors such as conformational dynamics,
water-mediated interactions and allosteric effects, leading to
false positives or false negatives in screening results.

Moreover, the transition from virtual predictions to
experimental validation is fraught with challenges. Candidate
compounds identified through virtual screening often encounter
obstacles such as poor bioavailability, off-target effects
and unexpected toxicity during in vitro or in vivo testing.
These practical issues highlight the need for more robust and
interpretable models that can better predict pharmacokinetic and
pharmacodynamic properties, as well as potential side effects®.

To address these challenges, the integration of molecular
dynamics simulations and advanced machine learning algorithms
isbeingexplored. Molecular dynamics can provideamore detailed
understanding of ligand-protein interactions by simulating their
behavior over time, offering insights into binding stability and
conformational changes. Meanwhile, machine learning models
trained on large datasets of experimental results can improve
the predictive accuracy of scoring functions, particularly when
applied to novel or poorly characterized targets.
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5.4 Combination of Deep Learning and Virtual Screening

The integration of deep learning into virtual screening
represents a transformative advancement, enhancing both
accuracy and efficiency. Deep learning models, such as
convolutional neural networks (CNNs) and recurrent neural
networks (RNNs), excel at identifying complex patterns and
relationships within large datasets. In the context of virtual
screening, these models can be applied to tasks such as protein-
ligand docking, activity prediction and de novo molecule
generation.

One notable application is the use of AlphaFold-predicted
protein structures to optimize structure-based virtual screening
campaigns. By providing high-accuracy models for previously
unresolved targets, AlphaFold enables the screening of ligands
against a broader range of proteins, including those with
significant implications for aging. Additionally, generative
adversarial networks (GANs) and variational autoencoders
(VAEs) are being employed to design novel compounds with
desired properties, expanding the chemical space available for
anti-aging drug discovery.

Despite these advances, challenges remain in ensuring the
interpretability and generalizability of deep learning models.
Training these models requires extensive, high-quality datasets
and their predictions must be validated through experimental
studies to ensure real-world applicability. Future developments
in explainable Al and transfer learning may help address these
issues, enabling more reliable and actionable insights®.

5.5 Aging Drug Discovery Driven by Multi-Omics Data

The advent of multi-omics technologies, encompassing
genomics, transcriptomics, proteomics and metabolomics, has
revolutionized aging research by providing a systems-level
understanding of molecular processes. Integrating these datasets
with virtual screening offers unprecedented opportunities to
identify novel drug targets and intervention strategies.

For example, transcriptomic analyses can reveal age-related
changes in gene expression, highlighting pathways that may
be amenable to therapeutic modulation. Proteomic studies can
further elucidate post-translational modifications and protein-
protein interactions that drive aging processes. Metabolomics,
meanwhile, can provide insights into metabolic shifts associated
with aging and identify small molecules that may restore
homeostasis.

By combining these data streams, researchers can construct
comprehensive models of aging networks, enabling the
identification of key nodes and hubs for targeted intervention.
Virtual screening can then be applied to identify compounds that
modulate these targets, accelerating the translation of omics-
based insights into therapeutic candidates.

5.6 Efficient Integration of Virtual
Experimental Validation

The seamless integration of virtual screening with
experimental validation is essential for realizing its full potential
in anti-aging drug development. Rational screening workflows
should prioritize high-confidence candidates for validation,

Screening and

leveraging advanced computational techniques to refine
predictions and reduce experimental burden'®.
Molecular dynamics simulations, for instance, can

complement docking studies by providing detailed insights into
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binding kinetics and stability. High-throughput screening (HTS)
platforms can then be employed to validate these predictions in
cell-based or biochemical assays, ensuring rapid and reliable
evaluation of compound efficacy.

Emerging technologies such as microfluidics and organ-
on-a-chip systems offer additional opportunities for efficient
validation. These platforms enable the testing of candidate
compounds in physiologically relevant environments, bridging
the gap between in vitro studies and in vivo applications. By
incorporating these innovations, the virtual screening pipeline
can be further optimized, reducing the time and cost associated
with drug discovery.

6. Summary and Outlook

Virtual screening (VS) has emerged as a cornerstone in aging
research, providing an indispensable computational approach for
exploring the molecular mechanisms of aging and accelerating
the development of anti-aging therapies. By targeting pivotal
signaling pathways such as mTOR, SIRT1, AMPK and FOXO,
VS has facilitated the discovery of numerous active compounds
that delay aging-related cellular and systemic dysfunctions.
These advancements not only pave the way for novel drug
development but also contribute to a deeper understanding of
aging as a dynamic and modifiable process. VS has transformed
the traditional pipeline of drug discovery by integrating
compound libraries such as ZINC and PubChem, along with
structural databases like PDB and AlphaFold, to enable high-
throughput and precise identification of promising targets. This
capability has reduced the timeline and cost associated with drug
development, positioning VS as a key driver of innovation in the
anti-aging field.

Despite its successes, VS in aging research faces significant
challenges stemming from the inherent complexity of aging.
Aging is governed by interconnected molecular networks
involving multiple signaling pathways, epigenetic modifications
and diverse cell types, all of which vary significantly across
tissues and individuals. For instance, the roles of pathways
such as ROS, AMPK and mTOR are context-dependent, often
exhibiting dual or contradictory effects in different biological
systems. This complexity complicates the identification of
universal targets and necessitates a more nuanced approach to
drug design. Additionally, the incomplete and biased nature of
existing biological data poses a major hurdle. While databases
like PDB and AlphaFold have expanded the accessibility of
protein structure information, many critical targets remain
unresolved or poorly characterized. Experimental datasets often
suffer from variability in experimental conditions or sample
sources, further exacerbating issues of reproducibility and
predictive accuracy.

The predictive models underpinning VS also present
limitations. Scoring functions, while central to molecular
docking, frequently oversimplify the interactions between ligands
and their targets. This can lead to false positives or negatives,
resulting in wasted resources during experimental validation.
Furthermore, current models often struggle to incorporate the
dynamic and flexible nature of protein-ligand interactions, as
well as the influence of cellular and systemic environments. The
reliance on computationally intensive processes also limits the
scalability of VS in scenarios requiring the integration of large
compound libraries or high-resolution simulations.
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To address these challenges, future developments in VS will
need to prioritize several key areas. The integration of deep
learning technologies holds immense promise for improving
the accuracy and scalability of virtual screening. By leveraging
neural networks, VS can predict compound-target interactions
with higher precision, even in cases involving highly dynamic
or poorly characterized targets. Deep learning models can also
assist in generating novel molecular structures and exploring
vast chemical spaces, enabling the discovery of innovative
compounds with anti-aging potential. For example, the use of
AlphaFold’s predicted protein structures in conjunction with
advanced deep learning algorithms could revolutionize structure-
based VS by enhancing the quality of docking predictions.

The incorporation of multi-omics data-spanning genomics,
transcriptomics, proteomics and metabolomics-represents
another critical frontier. Multi-omics approaches can uncover
the dynamic changes in molecular networks during aging,
providing a comprehensive framework for identifying and
validating therapeutic targets. For instance, transcriptomic data
highlighting age-related changes in gene expression can guide
the prioritization of targets for intervention, while metabolomic
analyses can reveal potential biomarkers for evaluating drug
efficacy. Integrating these datasets with VS workflows will
allow researchers to tailor drug discovery efforts to the complex,
multifactorial nature of aging.

Moreover, the efficient integration of VS with experimental
validation will be crucial for translating computational
predictions into actionable therapies. Advances in molecular
dynamics simulations can refine docking results by accounting
for protein flexibility and solvent effects, improving the reliability
of hit compounds. High-throughput experimental techniques,
such as high-content screening and mass spectrometry, will
further accelerate the validation of candidate molecules. These
experimental platforms can also provide feedback to refine
VS models, creating a synergistic cycle that enhances both
computational predictions and empirical outcomes.

Another promising avenue is the development of multitarget
drugs that address the multifaceted nature of aging. Aging
involves the simultaneous dysregulation of multiple pathways
and therapies targeting a single mechanism are often insufficient.
By designing compounds that modulate multiple pathways-such
as mTOR inhibition coupled with AMPK activation-researchers
can develop interventions that provide more robust and holistic
benefits. Advances in computational methods, including network
pharmacology and systems biology approaches, will enable the
rational design of these multitarget agents*?*25,

In addition to methodological advancements, the expansion
and refinement of supporting databases will play a pivotal role
in the future of VS. Databases that integrate comprehensive
information on aging biomarkers, experimental validation
results and clinical trial outcomes will enhance the reliability
and relevance of VS predictions™

Cloud-based computing platforms, offering scalable and
high-performance computational resources, will further support
large-scale VS campaigns, enabling the efficient screening of
ultra-large virtual libraries containing billions of compounds.

As these technologies and methodologies converge, VS
is poised to remain at the forefront of aging research, driving
innovations that not only elucidate the molecular basis of
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aging but also accelerate the development of precise, effective
interventions. By addressing the challenges of complexity,
data quality and translational validation, VS can help bridge
the gap between basic research and clinical application. This
will ultimately enable the development of therapies that extend
health span, mitigate age-related diseases and improve the
quality of life for an aging global population. The future of VS
in aging research is one of immense potential, marked by the
promise of transformative breakthroughs in our understanding
and management of the aging process'.
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