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ABSTRACT

The complexity of predicting hydrocarbon flow in anisotropic reservoir is exacerbated by imprecise empirical models, thus
nurturing the view of utilizing multiple linear regression and artificial neural network models in this research work, taking into
consideration production variables; tubing pressure, liquid flow rate, gas-oil ratio, oil specific gravity, water cut, line pressure,
choke size and gas-liquid ratio in predicting choke size and flowrate under critical flow conditions. For critical flow rate represents
a threshold above which solid and fines production increases significantly, which could lead to sand- related issues that can
be exacerbated by factors like high flow rates and water coning, negatively impacting oil and gas production. At critical flow
condition, the fluid velocity reaches the speed of sound, causing pressure waves to propagate through the flow at sonic velocity.
The effectiveness of the waves beyond this point tends to be lost and changes due to downstream pressure no longer have an
impact on flow rate. Thus, in applying machine learning in developing predictive models for flow rate and choke size, examining
correlations between production variables and comparing predicted outcomes with actual data, a better performance model was
observed for the artificial neural network model, with R*> = 0.9451 for flow rate and R? = 0.9839 for choke size, which reflects the
positive quality of the model. Also, the results showed a low error level per data point indicated by the mean absolute relative
error of 14% for choke size and 27% for flow rate forecasting.

Keywords: Machine learning; Artificial neural network; Multiple linear regression; Choke size; Flowrate

Nomenclature: GOR= gas- oil ratio; GLR= gas- liquid ratio; OSG= oil specific gravity; tStat= Test statistic; Pwh= Tubing pressure;
p- value= Probability value; F- statistic= Fisher’s statistics; ANN= Artificial Neural Network

Introduction techniques. These machine learning techniques have produced
more accurate prediction models that are useful in many domains,
including reservoir characterization, drilling automation and
the classification of lithofacies’. Machine learning, a subset of
artificial intelligence can be used to generate an expert system
that can be utilized in evaluating choke performance. A choke

influences the production of multiphase fluids through surface which is a componept ofa Well is used to maln.tal.n.ﬂow rates in
chokes'. In managing this challenge, understanding the complex the face of changes in flow line prc?ssure,.thl.ls limiting flowrates
relationships that exist between different variables by researchers ~ t0 prevent gas or water from coning, eliminate sand problems
has been made possible with the use of machine learning (ML) ~ triggered by rapid drawdown and manage production rates to

The examination of production data is made more difficult
by significant imprecision found in empirical fitting models
and correlations that are used to anticipate hydrocarbon flow in
reservoirs with heterogeneous and anisotropic characteristics.
The behavior of hydrocarbon reservoirs, both static and dynamic,
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prevent surface equipment from slugging. The wellhead choke
in controlling the wellhead pressure, in turn influences the
production rate and flowing bottom-hole pressure’.

Flow regimes that are largely governed by the pressure
differential across the choke are subcritical and critical (choked)
flow. The distinct behaviors between these regimes makes it
crucial that one distinguishes between these regimes when
estimating flow rates. Critical flow is recognized as when a
fluid velocity reaches sonic speed and the pressure waves
generated due to fluctuating pressures traverse the flow at the
speed of sound. In this flowing condition, the waves are rendered
ineffective as the fluid advances faster. The flow rate at this
condition becomes independent of downstream pressure and is
uninfluenced by shifts in downstream pressure®. It is noted to
exist when the pressure upstream of the wellhead is at least 70%
higher than the pressure downstream of the wellhead or when
the ratio of downstream pressure to upstream pressure is 0.588.

Taking into consideration the view of controlling solid
and fines production in a well production flow stream, critical
flow rate is a production threshold rate above which uniform
production of solids contained within the produced flow stream
is observed. In reservoirs prone to sand or fines production it
is essential to maintain sub- critical flow conditions as when
the flow rate exceeds this threshold (i.e., becomes critical), the
production of sand and fines increases substantially.

Sand-related issues adversely affect the recovery rate in
oil and gas production. High flowrate, which is influenced by
drawdown, as well as the occurrence of gas or water coning
are the main causes of these issues. Sand-related concerns can
lead to substantial annual financial losses for producers through
triggering damage to subsea and downhole equipment, surface
production facilities and an increased risk of catastrophic failure.
In regard to this, creating a dependable estimating model that
can analyze a choke effectiveness is imperative. This model
would leverage on algorithms trained on machine learning for
prediction of optimum flow rate and choke size by taking into
consideration a variety of fluid parameters. By doing this, these
challenges can be tackled effectively and the system can be
optimized.

Table 1: Summary of literature review and gap analysis.
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High viscosity reservoir fluids, in juxtaposition to low
viscosity fluids, enact a substantial frictional drag force on the
formation particles, making them a significant fluid feature as
sand production could result from this viscous drag in heavy
oil reservoirs with high specific gravity. Further, more sand is
produced correspondingly to the rise in water cut. The reason for
this is that as the connate water tends to adhere to the produced
water, the surface tension force declines, decreasing the
cohesiveness between particles. Additionally, when the water cut
rises, the relative permeability of oil reduces, necessitating an
elevated differential pressure to produce the hydrocarbon fluid at
the same rate. Shear force through the formation sand particles
becomes stronger owing to the elevation of differential pressure
near the well bottomhole. Sand production may originate from
the increased strains since they could lead to instability in the
sand arch encircling the perforation’.

An important consideration, that impacts both the rate of
production and the entire cumulative recovery of hydrocarbons
is precisely figuring out the most suitable choke size. The daily
production volume of hydrocarbon is significantly affected by the
choke size. Production can be enhanced and wellhead pressure
and bottomhole flowing pressure can be optimally minimized at
the same time by increasing the choke size®’.

In addition, water coning arises when the drawdown in the
immediate area of the well transcends the gravitational gradient
due to the differences in density between water and hydrocarbons.
Water advances vertically upward from the free water level in
the area near the well, which is where this phenomenon usually
occurs. This phenomenon contributes to liquid loading®.

Basically, a lot of methods for figuring out flow rates through
chokes have been published, however, it appears to be clear that
there is still yet any approach that can predict flow characteristics
with a high level of accuracy all through the whole range of
typical operating circumstances found in the oil and gas sector
(Table 1). Thus, it is evident that developing a model with the
various production variables considered using machine learning
approach to forecast choke performance is essential’.

Authors and year
of publication

Findings

Gap analysis

10

Employed in this research work is the use of gray- box modeling to achieve
an oil rate prediction with error ranging from 1.8% to 40.6%.

This analysis didn’t take into consideration
water cut and oil specific gravity.

This research work used stacked ensemble supervised machine learning to
predict flow rate with a mean absolute percentage error of 8.1%.

This work didn’t take into consideration water
cut.

It was inferred in this research work that random forest (RF) model accurately
replicates the actual rates under both critical and subcritical flow conditions,
whereas support vector machine (SVM) model generally captured the oil
rate trends but occasionally missed abrupt changes in the trend.

This work didn’t take into consideration oil
specific gravity and temperature.

In using a linear regression approach for forecasting oil production, a mean
absolute error of 0, MSE of 0.2 and RMSE of 0.3 was achieved.

Parameter such as water cut was not

considered.

In comparing the various models developed using multiple linear
regression, polynomial linear regression, support vector method, decision
tree regression, random forest, XGBoost, recurrent neural network and
artificial neural network, it was noted that an outstanding R? value of 0.96
for XGBoost, 0.97 for ANN and 0.98 for RNN was achieved.

The analysis didn’t consider oil specific
gravity.

The simple plotting technique proposed was able to predict well gas rate
using choke opening and wellhead flowing pressure with an absolute
average percent deviation of 5%.

Factors such as water- cut and gas liquid ratio
was not taken into consideration.
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In utilizing artificial intelligence techniques such as artificial neural
networks, fuzzy logic (FL), support vector machines and functional
networks in estimating choke size, fuzzy logic was considered to yield the
best result with a R? value of 1.000 for training and 0.810 for testing.

The analysis didn’t not take into consideration
water- cut.

The model developed using artificial neural network indicated an average
absolute percent error of 3.7% in the prediction of choke size and 6.7% in
the prediction of flow rate.

The analysis didn’t take into consideration
water- cut.

A comparative analysis of flow rate prediction performance among
traditional empirical methods, machine learning techniques and deep
learning algorithms was carried out with the results highlighting that deep
learning algorithm surpassed other models with an R? value of 0.9969.

The analysis didn’t not take into consideration
water- cut.

Using artificial neural network, a model for estimating flow rate was
developed and a correlation coefficient value of 0.89 for critical flow rate
and 0.92 for subcritical flow rate was achieved.

The analysis didn’t take into consideration oil
specific gravity.

20

ANN models delivered more accurate predictions compared to empirical
correlations, with coefficients of determination (R?) of 0.9653 for the Gilbert
model and 0.9951 for the modified Gilbert model.

Water cut wasn’t considered

Testresults indicate that the stacked generalization architecture outperformed
other prominent methods considered for production forecasting

Water cut wasn’t considered.

A new empirical model, derived from the Choubineh et al. model, was
developed to forecast the liquid production rate of chokes in Niger Delta oil
wells achieving an R? of 0.982.

Water cut wasn’t considered

N
2

Adaboost-SVR model showed outstanding performance over other models
proposed, achieving an Average Absolute Percent Relative Error (AAPRE)

Water cut wasn’t considered

of 5.15% and a correlation coefficient of 0.9784.

Materials and Methods

In this study, a dataset of 701 production variables; flow
rate, gas- liquid ratio, oil specific gravity, choke size, upstream
pressure, downstream pressure, gas- oil ratio and water cut were
considered in the development of machine learning models
using MATLAB software.

Assumption; for the purpose of these research work, the
pressure ratio at which critical flow occurs is taken as 0.588 as
indicated in the work of Hamzeh, et al**.

Multiple linear regression

A multiple linear regression model is developed with the use
of a MATLAB software.

Exploratory analysis: Processing the data involves carrying
out exploratory analysis which include assessing whether there
is a linear relationship between the independent and dependent
variables which can be examined using scatter plots. Cross plot
also known as scatter plot can be used to show the proximity of
the data points, indicating their level of agreement'’-*.

Artificial neural network

Another tool that will be employed for this study is artificial
neural network. The data set for an artificial neural network
are partitioned into training, validation and testing data. The
partitioning ratio intended for this study is 80% training, 10%
validation and 10% testing'’.

Measures of evaluation
R—squared (R?)

A higher R? value indicates a better performing model and
also the goodness of fit of the model.

_ Model sum of squared _ }:{1:1(?1—?1)2
E?: 1(}'1_?1)2

2

Eqn.i

" Total sum of squared

Where is the predicted outcome, is the observed outcome

and is the average of observed outcomes

Mean relative error (MRE)

Predicted;—Actual;

MRE= 23N, ( o )x100(%) Equ. ii

The mean relative error delineates the variance between the
predicted value and the actual value and is capable of assuming
positive as well as negative values. When forecasts diverge
significantly from the actual value, yet are evenly dispersed
between overestimations and underestimations, this discrepancy
tends to approach zero, despite each individual prediction being
notably inaccurate.

Mean of absolute relative error

Actual—-Predicted

MARE= %2?;1 x 100(%) Eqn. iii

Actual

The mean of the absolute relative error will be low only when
the error associated with each data point is minimal.

Standard deviation

1 N [(Predictedi—ﬂcmali) MRE

i=1 100

2
N-1 ] X100(%) Eqn. iv

Actualj

The standard deviation provides insight into the degree of
dispersion among the relative errors; however, if all predictions
consistently overestimate by, for instance, 20 —25%, the standard
deviation will be minimal®.

Results and Discussion

The input parameter for the model were tubing pressure
(Pwh), water cut, gas- oil ratio (GOR), gas- liquid ratio (GLR),
oil specific gravity (OSG) while the output parameters were flow
rate and choke size”’.
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Multiple linear regression and artificial neural network
techniques were applied to develop a model for flow rate and
choke size respectively?.

Multiple linear regression

(Figure 1), is a plot that visualizes the connections and
correlations between the features. The diagonal of the plot
represents the data frequency for each set. The correlation
coefficient between all of the data features ranges from -1 for the
strong inverse relationship and 1 for a strong direct relationship.
Water cut and tubing pressure showed the strongest correlation,
indicating a strong direct relationship as an increase in water
cut generally leads to higher tubing pressures due to changes in
fluid density, viscosity and flow patterns***°. While oil specific
gravity and tubing pressure showed weak direct correlation as
higher specific gravity oils result in higher hydrostatic pressure
and potentially increased frictional losses, leading to higher
overall tubing pressure. Also, oil specific gravity and flow rate
showed an inverse relationship, as high oil specific gravity leads
to increased pressure drops and flow resistance resulting to low
flow rate in an oil well*".
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Figure 1: A correlation matrix plot of data features.

In addition, choke size and flow rate showed very low
direct correlation which is indicative that increasing the choke
size generally increases the flow rate but careful management
is necessary to avoid reservoir damage, excessive water or gas
production and equipment wear®>. Also, the low correlation
could be indicative that the flowrate is dependent on the

Table 2: Data Statistical Analysis.
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reservoir energy. For instance, artificial lift is needed when the
reservoir energy has depleted, which is indicated by a decline
in tubing pressure. As observed in the correlation matrix plot,
tubing pressure has a strong inverse relationship with choke
size, indicative that choke size can influence tubing pressure®*-4.
That is an increase in choke size can lead to a decrease in tubing
pressure and a decrease in choke size can lead to an increase in
tubing pressure.

In (Table 2), it is indicated that most of the parameters
showed a nearly normal distribution (Pwh, choke size, water cut),
while GOR, GLR and flow rate showed positive skewness and
OSG showed negative skewness. High values of skewness and
kurtosis for GLR, GOR and flow rate represent an asymmetric
distribution for these variables with most of the data shifted to
the lower end*.

The result contained in (Table 3), indicates that the regression
is significant because the p-value = 8.72e-257 of the F-statistic
is less than 0.05. Also, the R-squared value:0.821 indicates
82% of the total variation in predicting choke size is explained
by the regression. Standard error (SE), which is a measure of
unexplained variation is within the range of 0.073169 to 0.1983.
The p-values of the various features (wellhead pressure, water
cut, gas- oil ratio, gas- liquid ratio, oil specific gravity) were less
than 0.05, which indicates that they contribute significantly in
the prediction of choke size**.

The result contained in (Table 4), indicates that the
regression is significant because the p-value = 1.8e-74 of the
F- statistic is less than 0.05. Also, the R-squared value: 0.399
indicates that 40% of the total variation in predicting flow rate
is explained by the regression. Standard error (SE), which is a
measure of unexplained variation is within the range of 54.006 to
146.37. The p-values of the various features (wellhead pressure,
water cut, gas- liquid ratio, oil specific gravity) were less than
0.05, which indicates that they contribute significantly in the
prediction of flow rate.

Artificial neural network

(Figure 2), shows the result of an artificial neural network
model with a level of accuracy upon confirming the performance
of the model with additional testing data set to be (R= 0.9839),
indicating a high degree of correlation between the predicted
and actual values, meaning that as one variable changes, the
other tends to change in a similar manner. It also indicates that
the model effectively captured the underlying patterns in the
data and could produce output that closely aligns with the actual
observations. The goodness of fit of the model, shown on the
regression plot indicates a very strong positive linear increasing
trend as majority of the data aligns to the 450 line for the training
and testing data set for prediction of choke size. The high R-
value reflects positively on the quality of the model indicating
that the ANN architecture, as well as the chosen parameters and
features, are appropriate.

GOR Pwh Choke size Water cut GLR OSG Flow rate
No. of data points 701 701 701 701 701 701 701
Maximum 0.0029 2397 48 99.3789 0.0013 1.0703 2174
Minimum 5.2910e-06 | 221.7799 |12 0.0914 3.3113e-06 | 0.9293 8786
Skewness 3.3803 0.6555 0.2549 0.0072 5.9990 -1.3431 2.1414
Kurtosis 15.0216 2.6388 3.0105 2.8599 100.2508 2.8482 9.9848
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Table 3: Result of multiple linear regression model for choke
size prediction.

Estimated Coefficients:
Estimate | SE tStat pValue

(Intercept) 25.805 0.073169 | 352.67 0

x1 (Pwh) -7.8652 0.1983 -39.663 1.13E-180
x2 (water cut) 3.186 0.18754 16.989 2.13E-54
x3 (GOR) 1.2627 0.10869 11.618 1.22E-28
x4 (GLR) -0.38085 | 0.11686 -3.2591 0.0011723
x5 (0SG) 0.4359 0.078052 | 5.5847 3.36E-08

Number of observations: 701, Error degrees of freedom: 695
Root Mean Squared Error: 1.94

R-squared: 0.821, Adjusted R-Squared: 0.82

F-statistic vs. constant model: 637, p-value = 8.72¢-257

Table 4: Result of multiple linear regression model for flowrate
prediction.

Estimated Coefficients:

Estimate SE tStat pValue
(Intercept) 12365 54.006 228.95 0
x1 (Pwh) 1100.2 146.37 7.5166 1.7375e-13
x2 (water cut) -1194.4 138.42 -8.6285 4.2095e-17
x3 (GOR) -143.24 80.223 -1.7855 0.074614
x4 (GLR) 183.74 86.254 2.1302 0.033504
x5 (OSG) -934.85 57.611 -16.227 1.8821e-50

Number of observations: 701, Error degrees of freedom: 695
Root Mean Squared Error: 1.43e+03

R-squared: 0.399, Adjusted R-Squared: 0.395

F-statistic vs. constant model: 92.3, p-value = 1.8e-74

R=0.98393
40 .

35

30

25

20

PREDICTED CHOKE SIZE

15

15 20 25 30 35 40
ACTUAL CHOKE SIZE

Figure 2: Regression plot for prediction of choke size.

(Figure 3), shows the result of an artificial neural network
model with a level of accuracy upon confirming the performance
of the model with additional testing data set to be (R=0.9451), an
indication of a very strong positive linear relationship between
the predicted and actual values, which also highly reflects
positively on the quality of the model that the ANN architecture,
as well as the chosen parameters and features, are appropriate.
The goodness of fit of the model, shown on the regression plot
indicates a strong positive linear increasing trend as majority of
the data aligns with the 45° line.
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R=0.9451

PREDICTED FLOWRATE

1 12 14 16 18 2
ACTUAL FLOWRATE 5 10 4
Figure 3: Regression plot for prediction of flowrate.
Evaluating the performance of the ANN models:
Table 5: Dataset for evaluation of model.
SET | Flow rate Si:gke Pwh | Water Cut | GOR GLR 0SG
1 1109522 | 18 2372 | 98.795181 | 0.001 1.20E-05 | 1.063251
2 12770.83 | 20 1983 | 96.644295 | 0.000708 | 2.38E-05 | 0.929329
3 11442.42 | 22 1536 | 92.805755 | 0.0004 | 2.88E-05 | 1.069258
4 10868.79 | 24 1158 | 70 0.000295 | 8.84E-05 | 1.069965
5 12076.44 | 26 923 | 50.877193 | 0.000301 | 0.000148 | 1.060071
6 13284.08 | 28 766 | 49.056604 | 0.000259 | 0.000132 | 1.065724
7 11472.61 | 30 627 | 47.058824 | 0.000309 | 0.000163 | 1.069965
8 8981.849 | 32 499 | 48.421053 | 0.000299 | 0.000154 | 1.069117
9 12438.73 | 34 459 | 46.808511 | 0.000283 | 0.000151 | 1.04318
Table 6: Summary of result.
SET Flow rate | Flow rate | Choke size | Choke size
(actual) (Predicted) | (actual) (Predicted)
1 1109522 | 11084.11 18 18.4
2 12770.83 12872.3 20 20.2
3 1144242 | 11673 22 21.8
4 10868.79 | 10515 24 24
5 12076.44 12750 26 26.1
6 13284.08 12800 28 28.3
7 11472.61 11400 30 30.2
8 8981.849 | 9555 32 32
9 12438.73 12150 34 31.7

In terms of model validation, it can be inferred that with an
R value of 0.9839, the choke size model is likely generalizing
well to unseen data. This means that the model is not only fitting
the training data well but could also make predictions on new,
unseen data as shown in (Figure 4). Also, with an R value of
0.9451, the flowrate model is likely generalizing well to unseen
data. This means that the model is not only fitting the training
data well but could also make predictions on new, unseen data
as shown in (Figure 5).

As observed in (Table 7), the artificial neural network model
for choke size with R=0.9839, showed high level of accuracy in
predicting the target output compared to the models for flowrate
with R= 0.9451 (Table 8). Also, the mean of absolute relative
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error for choke size is 1.4% and for flow rate is 2.7%, which
is an indication that the error associated with each data point is
low.

A GRAPH OF CHOKE SIZE (PREDICTED) VS CHOKE
SIZE (ACTUAL)

CHOKE SIZE

—+— Choke size (actual) 18 20 22 4 26 28 30 32 34

i Choke size (Predicted) 184 202 218 24 261 283 | 302 32 1.7

—4— Choke size (actual | B Choke size (Predicted)

Figure 4: Evaluation of actual Vs predicted choke size.

Table 7: Statistical evaluation of ANN models.
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A GRAPH OF FLOWRATE (PREDICTED) VS
FLOWRATE (ACTUAL)

FLOWRATE (STB/D)

—4— Flow rate (actual)

B Flow rate (Predicted) 11

——Flow rate (actual)

Flow rate (Predicted)

Figure 5: Evaluation of actual Vs predicted flow rate.

Model R Mean Relative Error Mean of Absolute Relative Error (%) Standard deviation (%)
CHOKE SIZE | 0.9839 | -0.256175 1.43206 2.589974
FLOWRATE 0.9451 | 0.52964015 2.719349 3.598931

Table 8: Comparison of ANN models developed with previous works.

ANN models R2 (0.9839), MARE (1.4%), SD (2.5%) for choke size prediction model
R2 (0.9451), MARE (2.7%), SD (3.5%) for flowrate prediction model
Authors Result achieved

Hossein et al. (2021)

R2 (0.9644); AAPD (5.396); SD (697.9) using artificial nueral network for flow rate prediction

Al-Khalifa et al. (2013)
error (6.7%); SD (10.5), for flow rate prediction.

R2 (0.991); Average absolute percent error (3.7%); SD (5.56), for choke size prediction and R2 (0.986); Average absolute percent

Hamzeh et al. (2018)

R2 (0.997); AAPD (7.33-8.51), SD (288.77-563.85), for flowrate prediction.

Conclusion

This study presents the application of machine learning
(multiple linear regression and artificial neural network)
techniques taking into consideration production variables such
as tubing pressure, liquid flow rate, gas-oil ratio, oil specific
gravity, water cut, line pressure, choke size and gas-liquid ratio
in developing a model for predicting flow rate and choke size
from which it can be deduced that, Artificial neural network
models with an accuracy of R=0.9451 for flow rate model and
R= 0.9839 for choke size model was noted to be better than
multiple linear regression models with R= 0.399 for flowrate
model and R=0.821 for choke size model. Also, upon evaluation
of the ANN model in predicting choke size and flowrate, the
mean of absolute relative error 1.4% for choke size and 2.7% for
flow rate was gotten which is an indication that the measure of
error associated with each data point is low.

Recommendation

The research employed 2 techniques in the development of
a model for prediction of choke size and flow rate, therefore
further studies could include other machine learning techniques.

A representative dataset with high measure of data accuracy
and low error associated with each data point could be employed
in achieving a model with a level of accuracy (R= 1.0000), as
these would result to high level of accuracy of the model in
predicting values.

Contribution to knowledge

This study has encouraged the understanding of how various
production variables influences choke performance via the
correlation matrix.
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