
A Comparative study of Long Short-Term Memory and Gated Recurrent Unit

Sebastian Ifeanyi Obeta1*, Dr Enrico Grisan1, Chinazor Vivian Kalu2

*1Department of Data Science, London South Bank University, UK

2Department of Artificial Intelligence with Business Startegy, Aston University

*Corresponding author: Sebastian Ifeanyi Obeta, Data Scientist and NLP Engineer, Cambridge University, UK. E-mail: sebastian.
obeta@gmail.com

Citation: Obeta, S. I., Grisan, E., & Kalu, C. V. (2023). A Comparative study of Long Short-Term Memory and Gated Recurrent
Unit. J Artif Intell Mach Learn & Data Sci, 1(1), 1-9.

Received: 23 December, 2022; Accepted: 17 January, 2023; Published: 20 January, 2023

Copyright: © 2023 Obeta, S. I., et al. This is an open-access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author
and source are credited.

1

 A B S T R A C T
In natural language processing (NLP), the assumption that a neural network has an independent state among data samples

does not apply to sequential data. Hence recurrent neural networks (RNN) have played a key role in sequential dependency in
natural language processing with the key features of providing context to the processing and tackling vanishing gradient. Long
Short-Term Memory Units (LSTM) are RNN blocks that can retain essential information even if it is far from the current point
of analysis (extended memory). Still, they also have a fading effect that favours closer information (short memory). Despite this,
they still need to remember vital details far from their current position, which goes against the intent of the extended memory
effect. Gated Recurrent Units (GRU) have shown excellent results in sequential data and were introduced to overcome the
limitations of LSTM by using two vectors (update gate and reset gate) to decide what information passes to the output. They can
also train to keep data for a long time without it washing it through time or removing information irrelevant to the prediction.
Some scholars suggest that gated recurrent units could be a suitable replacement for long short term memory.

This comparative study presented the performance difference between LSTM and GRU and their bi-directional-based neural
networks when they face the task of classifying text data. The evaluation of Gated Recurrent Unit (GRU) versus Long Short Term
Memory (LSTM) and their bi-directional versions were carried out on a task of a website based on its content. Our analysis
showed that a gated recurrent unit (GRU) is a good substitute for long short-term memory for text data classification. The
bi-directional GRU outperformed the bi-direction LSTM. We recommend a gated recurrent unit as a better alternative to Long
Short Term Memory on text data classification.

Keywords: Machine learning, Recurrent neural network, Gated recurrent unit, Long short-term memory, Deep learning.

Research Article

Vol: 1 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

Introduction
The effect of the internet and the web has generated a large

volume of data that increases geometrically from different
sources. The data generated are mostly in amorphous form and,
to help gather insights from them, it creates an enormous need
for data pre-processing and management. One such task comes
in the form of text classification or clustering.

Text classification is a significant task in natural language
processing (NLP), and it usually involves dealing with
unstructured data originating from different sources, such
as tweets and newsletters. Websites are a specific source of
unstructured data with varying contents as they can be related

to newspapers, conferences, sports events, and people’s profiles.
The text classification task is a concept in NLP that requires the
classification of text documents or text data into groups. If we
consider the spontaneous growth of the web, it is evident that
it has a plethora of content which suggests the need to have
organised and filtered information.

Text classification tasks are then linked to sentiment analysis,
topic modelling, web information retrieval, and spam filter.
There are four classification models in text classification which
are:

• Rule-based (rules drafted or defined by a human),
• Probability concept,

https://urfpublishers.com/journal/integrated-health

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Obeta, S. I., et al.,

2

• Learning-based (ensemble model, logistics regression, state
vector mechanism),

• Deep learning-based (Recurrent Neural Networks,
Convolutional Neural Networks, Hybrid Deep Neural
Networks). (Zhang et al., 2022) (Charu & Cheng Xiang,
2012).

Traditional text classification tasks comprise three steps.
The first is feature engineering which is dominant in Natural
Language processing tasks and belongs to a family of models
tagged bags of words. The bags of word tasks are word count,
term frequency-inverse document frequency (TF-IDF), and
N-grams. Although they help extract features from the text,
semantics, structure, sequence and context of words are lost due
to the inherent nature of the model of being just a bag of words.
However, the state of art in feature engineering has improved by
including part of speech tags and noun phrases. (David, 1992).

 The second form is the feature selection that involves the
wrapper and wrapper approach. The strategy for the wrapper
is called try and test, which takes time and involves high
computational power. In contrast, the filter method picks the
informative feature by filtering with some metric measure. The
third and final step form is the machine learning algorithms.

The traditional concepts create a gap and a motivation to
engage a more sophisticated model that can capture information
and represent features as vectors of a word, known as embedding.
Data scarcity is another limitation of a bag of words, meaning
they must detect sufficient data in a corpus during modelling.
The introduction of the deep neural network gave insight into
tackling the data paucity and more neural models that improve
learning. (Christain, et al., 2003). However, many researchers
have proposed using easy data augmentation techniques with
four steps (Xu et al., 2021). The neural network has proven and
performed better in many NLP tasks.

Classification text data from websites is exciting and
challenging, as each website differs in many ways, either
by structure or content. To some extent, one can find almost
everything online, which translates into the availability of many
unstructured text data whose full information content can be
exploited only upon analysis, understanding and tagging.

RNN is a type of neural network that feds the input of a current
step with the output of the previous step. A typical traditional
neural network (NN) sees the input and work as independent. A
word prediction task requires referencing the previous word, and
RNN tries to solve it with the help of a hidden layer (Casanueva
et al., 2020). The critical feature of RNN is the hidden layer
that considers some sequence information. Recurrent neural
network (RNN) has shown outstanding outcomes in many tasks,
particularly in machine translation when the output and input of
a model are of variable length. (Graves, 2012). The milestone
achieved in the machine translation task is not with the vanilla
RNN but with LSTM, GRU, and their sophisticated hidden
layer. (Sepp & Jurgen, 1997) (Cho et al., 2014).

To further improve RNNs performance and fully exploit
the context provided by textual sequence, some additional
units specifically targeted at sequential information have been
proposed:

LSTM is a subset of RNN designed to recognise the pattern
in sequence by taking time and sequence into account, which is
the difference between RNN and LSTM from all other neural
networks. Research showed that RNN and LSTM are powerful

and valuable types of NN; however, in language tasks, attention
mechanisms, transformers, and memory networks tend to surpass
them. In the Mid-90s, German researchers proposed LSTM as a
network that can preserve error and back propagated through
time. They maintained a constant error and allowed the recurrent
net to learn over time steps. This lead to an open channel which
is a challenge to machine learning and AI since algorithms are
frequently faced with environments where reward signals are
delayed.

GRU is a subset of RNN that uses connection through a
sequence of nodes to carry out a machine-learning task that
deals with memory and clustering. It helps to adjust the weight
of the input in a neural network and thereby solves the gradient
problem common with recurrent neural networks.

However, the question of the most appropriate memory unit
for text classification and prediction remains unsolved. This
work uses GRU and LSTM as memory units for the same deep
network and classifies 53,440 website-based content data. Both
one-directional and bi-directional variants will be evaluated.

Literature Review
Different research has addressed text classification and

proposed techniques and solutions. Classification in the context
of text data is gaining momentum and is one of the complex
tasks in natural language processing. The text mining task covers
classification, topic modelling, spam classification, sentiment
analysis, and document classification. Compared with machine
learning, deep learning has significantly achieved the natural
language processing task by passing through several stages
and document vectorisation. Different deep learning techniques
have been deployed in various tasks of NLP. A recurrent neural
network has proved successful, and deep learning recursive
models for sentiment analysis (Casanueva et al., 2020) and
language modelling (Richard et al., 2016). (Wu et al., 2022)
Speech recognition and sentence production from poems and
visuals (Ankit et al., 2006) (Micro et al., 2018).

The ground-breaking work done by Bengio et al. (1994) on
word embedding using a neural network model on a language
model with each word’s preceding contexts (Tomas et al., 2010)
inspired Mikolov et al. (2013) to propose two novel architectures
for the continuous bag of words and skip-the n-gram approach,
which has a vector representation by computing successive
terms from a large dataset.

The outcome was measured from a similar word task
compared to the previously performed techniques based on
different neural networks. The method was used in local and
linear contexts and was further transformed into dependency-
based word embeddings and global vectors (GIoVe).

Some things could have been improved with the linear and
local context. The word embedding in a semantic-based tackled
the linear limitations with an introduction of syntactic contexts
obtained from the dependency parser. In contrast, the GloVe
approach addressed the local limitation by looking at the word-
to-word statistics.

Many discoveries have been made with recurrent neural
networks for language modelling. One such is the arbitrary
dependency as proposed by (Pengfei et al., 2016). Moreover, the
ability of a deep learning framework to train models creates a
whole way to generate relationships between labels and features
and hence makes prediction accurate. The success of RNN was
seen in the automatic extraction of features in a document using

3

Obeta, S. I., et al., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

Given a sequence of value m = (m1, m2,……, mt,) RNN will
update its hidden state hs as:

 (1)

The implementation of Eq 1 can take this form:

 (2)

Where g is the sigmoid function, wxh is input to the hidden
layer weight matrix, hs is a hidden state vector with time, whh is
hidden to hidden weight matrix and b1 is the bias. In text data,
a traditional neural network looks at the data points in isolation;
however, RNN considers the word’s sequence. If we have a task
to identify a name in a given sentence with a concept called
name entity, we need the knowledge of other words surrounding
it to carry out the task.

Consider the diagram in figure 2.2, where t1, t2 are time steps,
with input x1, output y1, weight matrix of the input wxy, weight
matrix of the hidden layer whh, and weight matrix that controls
the information from the hidden state to output (why).

bi-directional LSTM and attention mechanism. (Srividhya &
Anitha, 2010).

LSTM and GRU are algorithms in the recurrent neural
network. It is imperative to discuss the need for RNN
architecture and the shortcoming of neural networks in sequence
data modelling. There has been a generally accepted view about
neural networks, which is the independent state among data
samples, and this assumption cannot be applied when sequential
data is involved. Such sequential data includes speech, language,
time series, and media data (Akash, 2022) because they display a
level of dependency within them across time.

The neural network sees the data samples individually,
which results in the model losing the result that would have been
seen when being treated as sequential information. To account
for sequential dependency will be equivalent to joining a fixed
number of consecutive data points and seeing them as one data
point. (Alex et al., 2013). The standard technique in representing
data sequences defines it as a sequence of words. The language
modelling task with RNN takes words one by one, and the output
is the probability of the predicted words.

(Tobias & Matthias, 2017) Applied RNN to model the
sequence of customer interaction in a webshop. They used the
frequency of customers to predict the probability of a customer
placing an order within seven days. The input data was a one-hot
encoder vector which stood for the previous or past action of
customer orders and was compared to logistic regression with
the help of feature engineering for a space of 5 months. Both
achieved a similar result and showed by visualisation how
consumer behaviour changes over time. The static nature
of feedforward neural networks over a dynamic classifier
necessitated the RNN architecture. To extend the feedforward
neural network to a dynamic classifier, they fed the signals from
the previous timestamp into the network. They were called
recurrent neural networks. (Paul, 1990).

The modified version of feedforward in NN was the capability
to reference the previous time frame because the feedback was
either vanishing or exploding. The RNN is usually limited to
10-time steps, which is also a significant limitation. Long Short-
Term Memory (LSTM) was introduced to learn as long as 1,000
time steps depending on the complexity of the network (Sepp
& Jurgen, 1997) by enforcing a constant error flow through a
continuous merry-go-round approach in a unit.

Although LSTM achieved remarkable success in long-lasting
unit memory compared to RNNs, it still needs to remember
pieces of information that seem far from the current point or
position. It became a big challenge, and more pronounced when
(Guozheng et al., 2018) attempted to use LSTM for document-
level sentiment classification. Many researchers took up the task
of modifying LSTM to store information, and the outcome gave
rise to different models of LSTM. (Ke et al., 2016) Proposed
adding external memory to LSTM, but the result could have
been better concerning time because of the vast memory matrix.
(Duyu et al., 2016) Considered the bi-directional LSTM with
attention model on document sentiment and had a 95% success.

GRU was demonstrated as an extension of LSTM by
(Junyoung et al., 2014). By eliminating the output gate, which
is in charge of writing the contents of the memory cell to a
more significant net at each time step, his design reduces the
complexity of LSTM. The result of Junyoung et al. on a music
dataset showed that the GRU made faster progress in actual CPU
time, although the effect is inconclusive. They suggested that the

Figure 2.1: RNN Architecture (Pascanu, et al., 2013).

choice of framework depends on the dataset and corresponding
task.

RNN

RNN architecture has a significant drawback which (Bengio
et al., 1994) highlighted the difficulty in training an RNN because
of its vanishing gradient descent. Researchers tried to solve
this by proposing two main approaches to reduce the negative
impact. The first approach uses a better learning algorithm rather
than stochastic gradient descent. (Bengio et al., 1994), (Pascanu,
et al., 2013), (Van Gompel et al., 2022). The second suggestion is
to use an activation function which is more than just serving as an
activation function with affine transformation and a gating unit.
The second suggestion gave birth to another activation function
or a recurrent unit called long short-term memory (LSTM)
(Sepp & Jurgen, 1997). Shortly after, another recurrent (gated
recurrent unit GRU) was proposed by (Cho et al., 2014). The
two frameworks (LSTM and GRU) have been shown to perform
well in tasks requiring long-time dependencies. (Sutskever, et
al., 2014) (Dzmitry, et al., 2014).2.2 Limitations of Multilayer
Perceptron Layer.

MLP cannot learn from sequence information from data.
Simple expressed by saying:

• it loses its sequence information hence,

• Context is lost.

RNN Architecture

The word recurrent in RNN suggests that it performs the same
task for every sequence by being dependent on the previous step.
It has two key features:

• A hidden state that is distributed in nature and allows
information storage of the past and,

• Allows the hidden states to update themselves in complicated
and nonlinear dynamics.

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Obeta, S. I., et al.,

4

A time step t1 with a word x1 as input will compute some
activation to give output y1 which is determines if the word is a
person’s name or not. The time step t2 will take word x2 and give
output y2. The difference between MLP and RNN is the time step
t2 in making a prediction. It will not only consider the input x2 but
also take the hidden state of the previous word h1 because it has
the information that has been computed from the previous one.
Similar at each time step when making a prediction, it will not
take only the input but the hidden state of the previous time step
that has the information of all words processed. It will use all
the information to make predictions. The first step in forwarding
propagation in RNN is:

Calculate the current hidden state:

 where g is tanh/ReLU (3)

Calculate the current output where
g is sigmoid/softmax (4)

RNN architecture has a significant drawback which (Bengio
et al., 1994) highlighted the difficulty in training an RNN because
of its vanishing gradient descent. Researchers tried to solve this
by proposing two main approaches to reduce the negative impact.
The first approach uses a better learning algorithm rather than
stochastic gradient descent. (Bengio et al., 1994), (Pascanu, et
al., 2013). The second suggestion is to use an activation function
which is more than just serving as an activation function with
affine transformation and a gating unit. The second suggestion
gave birth to another activation function or a recurrent unit
called long short-term memory (LSTM) (Sepp & Jurgen, 1997).
Shortly after, another recurrent (gated recurrent unit GRU) was
proposed by (Cho et al., 2014). The two frameworks (LSTM
and GRU) have performed well in tasks requiring long-time
dependencies. (Sutskever, et al., 2014) (Dzmitry, et al., 2014).

Need for LSTM-and GRU

The input weight (wxh), Output weight (why), and hidden
state (whh) weights are randomly initiated during the forward
propagation state and at backpropagation state, we compute the
loss of the network by updating the weight of the matrix for better
prediction. The gradients are calculated for the backpropagation
of the loss value concerning the weight. The gradient descent
algorithm updates the weight so as to have a minimal loss as
shown in fig 2.3.

can be mitigated by truncating the backpropagation process or
using the techniques of gradient clipping.

The known methods to train an RNN are backpropagation
through Time (BPTT) and Real-Time Recurrent Learning
(RTRL). (David, et al., 1986) (Paul, 1990), though
backpropagation is the standard method. The way the two
are weighted differently makes a difference. The identical
backpropagation procedure is followed by BPTT, except the
chain rule is used repeatedly instead of only once.

 The objective function will depend on activating the hidden
layers and their influence within the time step. The vanishing
gradient occurs during training in RNN (backpropagation),
predominantly seen if the training involves long input sequences
or many layers. The error gotten during the training updates
the weight of the network towards the right with its magnitude.
Mathematically this is achieved with the chain rule. It will pass
through matrix multiplication either by shrinking or blowing up
exponentially for long sequences. It then means that having a
too-small gradient will result in the weight needing to be updated
effectively, whereas large gradients can cause instability. There
are gates in LSTM and GRU designed to solve this with their
additive components. They keep the existing hidden state and
add new content to it. This allows the error gradients to go
through the backpropagation process without vanishing or
exploding too quickly.

Long Short-Term Memory

Various strategies were proposed to tackle the issue of
vanishing gradient descent in RNN. Some such attempts
simulated error propagation (Bengio et al., 1994) made in the
1990s. Bengio et al. introduced time delays (Kelvin & Alex,
1990), sequence compression (Micheal, 1991) and the LSTM
architecture. (Sepp & Jurgen, 1997). The first development of
LSTM was to reduce the vanishing gradient rate and make RNN
effective for long-term memory tasks. The architecture of LSTM
has four gates. The input, forget gate, output, and memory cell.
The gate determines what should be written to or read from
the memory cell, where the information is kept. The gates are
the medium of transport of information based on the weights.
However, some weights, such as the input and the hidden state,
are adjusted during the learning rate. Like a filter on a waterway
that keeps contaminants from going through, these gates aim to
filter out any undesired input or information.

However, the gates are trained to accurately detect what is
helpful from what is not.

Where σ is an activation function is (sigmoid), xt is the input
vector with time, hs-1 is the hidden with respect to time, w is the
hidden input weight matrix and is the bias.

The input gate detects what information is to be stored in the
long-term memory but can work with the information from the
current input short-term memory from the previous time step
and will filter the information that are not necessary. This is
achieved mathematically with two layers. The First layer selects
the information to pass to the next layer bypassing it with short-
term memory through a sigmoid activation function. This layer
is trained through backpropagation, where the weight is updated

Figure 2.2: Training RNN Model (Pengfei, et al., 2016).

Figure 2.3: Backpropagation process.
There are two main challenges with RNN, the first is the

vanishing gradient caused by the network’s inability to learn
long-term dependency, and the second is the exploding gradient.
Here, the gradient is too large and tends to crash the model
during training due to numerical overflow. To overcome the
vanishing gradient, initialize the weight so the gradient will not
vanish. However, it is hard to achieve such; hence LSTM and
GRU are designed to accomplish that. The exploding gradients

5

Obeta, S. I., et al., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

and trained to detect helpful information as seen in Eq 6. The
second layer in the input gate takes the current input and passes
it through a tanh function to regulate the network.

It is a replica of LSTM but without an output gate which allows
the flow of content from the memory cell to the large net at each
time step. It is said to be fast for training purposes and its internal
makeup is not complex but requires few computations to update
the hidden layer. GRU is made up two gates:

Reset gate () and update gate (. The reset gate is responsible
for the combo of input with the memory cell and the update gate
looks after and defines how much of the memory cell to store.
These gates act like filters but are highly trained.

 (10)
The difference between LSTM and GRU is that the former

contains two different states that pass between the hidden and the
cell state. While the later has only one hidden state transferred
between time steps. The single hidden state has the ability to
hold both the long term memory and the short term at the same
time with the help of the gated mechanism that hidden and input
information goes through.

Figure 2.4: LSTM Framework (Pascanu, et al., 2013).

Figure 2.5: Input gate Flow (Gabriel, 2019).

The forget gate acts as a filter but takes the product of the
forget vector seen from the current input and incoming short-term
memory. To generate the forget vector, the long-term memory
and the current input are passed through a sigmoid function
similar to the input layer, which determines what information
to dis-regard and pass through to the next cell, as seen in Eq 5.

Figure 2.6: Forget gate flow (Gabriel, 2019).
The output does most of the work. Here it takes the current

input and previous short-term memory state and adds to an
entirely new long-term memory to produce a recent short-
term memory that will be passed through to the next step. The
previous short-term memory and current input will pass through
the sigmoid function with different weights to create a third filter.

Figure 2.7: Output gate flow (Gabriel, 2019)

A Bi-directional LSTM is made up of two RNNs. The first
function of the RNN is responsible for the sequence in regular
order or forward movement, and the second is in charge of the
reading in a reverse way. The training of Bi-directional LSTM
does not capture the encoding in any particular information;
instead, the encoded vectors are fed further into the network
layer to a point a prediction is made, and a loss is incurred. This
helps it extract all relevant information for the task at hand from
the input sequence.

Gated Recurrent Unit (GRU)

GRU is a branch of LSTM, introduced by (Cho, et al., 2014).

Figure 2.8: GRU Framework (Charu, 2018).
The reset gate is generated using the hidden state from the

previous time step and inputting data at the current time step.
Representing it mathematically, we take the product of the
previous hidden state and current input and sum them with their
respective weight before passing it through a sigmoid function
which will squash them into 0 and 1, as seen in LSTM gates.
When the entire model is trained with backward propagation, the
weights will be updated, and by then, we will learn to keep only
important information.

The Update gate is just like the reset, and the hidden gate
computes the previous and hidden state and the current hidden
state. The reset and update gate is obtained with the same formula
but with a slight difference in the weight multiplier between
the hidden and input state are unique. This means that the final
output or vector for each gate will be different and makes them
serve specific functions.

Methodology/Data Analysis
This research was built with Keras because it is simple and

easy to use, supports the hardware of GPUs for parallel Matrix
Multiplications, supports python programming language, and
has a large community that contributes to its development. We
looked at the embedding layer, model, and evaluation and saved
the trained model. The experiment was performed on a google
collab connected to Python 3 with a google compute engine
power of RAM 3.14 GB/12.72 GB and a disk of 31.73 GB/68.40
GB. Two models were developed for each architecture. The
experiments first evaluated the performance of LSTM, BiLSTM,
BiGRU, and GRU on 53 447 websites’ content by using the
sequence information to categorise the website based on its

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Obeta, S. I., et al.,

6

content. The experiment was done with python packages such
as pandas and NumPy, used for data manipulation, and NLTK
package for text processing. The dataset was first cleaned by
removing the noise associated with text data; label encoding was
carried out, validation splitting by 70% and 30%, padding and
finally, the model build.

Data description

The dataset contains 53,447 rows meaning there are 53,447
websites; each website has associated tags with text content,
some with multiple tags with suitable varieties such as websites
of news, publication, profile (LinkedIn), conferences, forums,
clinical trials, and thesis.

Data Preprocessing

For text data, preprocessing is an essential task in NLP. The
purpose of data preprocessing is to remove noise and incomplete
and complete data. Data from different sources may have other
formats. 80% of data or text mining tasks are done at this stage.
(Sebastian & Joddelle, 2020), for this research, the preprocessing
done in this task is cleaning, Label encoding, validation split,
and padding.

Cleaning

Text cleaning aims to remove unwanted or useless
information present in text data. Examples of such words are
stop words, commonly called common entities. Examples are
hashtags, punctuations and numbers. We have slang sometimes
seen in text data and human errors (spelling and grammar
errors). There are different reasons why text data contain noise.
A few reasons are human errors, which could result from data
errors, software digitalization accuracy, machine translation, or
web scraping. It becomes necessary for text cleaning to be done.
Text cleaning, therefore, is a systematic removal of text noise
that helps reduce text data’s dimension; algorithms learn better
and fast, removing repetitive information and helping to focus
on the entity present in a text.

The following cleaning task was done on the dataset:

• Convert all text to lowercase for simplicity and uniformity
when working and training the data.

• Removal of links and hyperlinks. Generally, links or
hyperlinks play no role in text data analysis or any form of
texting mining.

• Special character, punctuation, number removal, and text
inside {}, (). Removing special characters in text data is
essential to avoid concatenating between words and making
them unavailable.

• Removal of stop words. This eliminates unimportant words
in giving intelligent patterns or information to the task at
hand. We used the NLTK package to remove stop words in
this task.

Label Encoding.

The main challenge with text data is converting text or
categorical data to numerical data and making the algorithm
accept it and make sense of it. The neural network makes use
of numerical values as input. There are many ways to carry out
such a task; I used a label encoder for this research, and label
encoding was only done for the target column. Label encoder is
a package from the SciKit-learn library in python. The dataset
contains different tags, which are our target variables. Hence, we
labelled the encoder to convert it to numerical data for our deep
learning model to learn.

Validating Splitting

This research was split into two. Training and testing. The
training is where the model learns and tests to validate our model
prediction on the subset. The split was 7:3 where the evaluation
is on 30% of the data. In this task, I used the text split function
from SciKit-learn where y is the label encoder target.

Padding

Sequence data have a common context of having different
lengths. Padding in this task is to ensure all of my sequences
has consistent length. To find out the length to be used for this
research, I checked for the sequence distribution of the dataset. I
plot a number of words in each sentence as shown in fig 3.

Figure 3: Words distribution.
The histogram shows that most of the sequence falls within

length 500. Hence, 500 was picked as the maximum length
for 500 for the padding. All sequences less than 100 will have
zero values added. Before padding the sequence, the text will
be tokenised with Keras and further label encoded with text to
sequence the individual words in the text. Text to sequence is
another form of dense vector representation of words which is a
class approach called embedding. Embedding is a transformed
way of using a bag of words techniques to represent each word
in a corpus with a sparse vector or an entire vocabulary. With
embedding techniques, words are seen as dense vectors showing
the projection of words in vector space. The position of tokens
in the vector space is learned from the corpus and considering
the surrounding words when it is used. Two popular methods for
word embedding are word2Vec and GloVe.

This research used the Keras framework which covers
embedding layers for neural networks on text data. It is flexible
and used in different ways such as:

• To learn word embedding which can be re-used in another
model,

• In deep learning model, it can equally learn with the model
itself

• It can accept pre-trained models.

The task achieved is to create vocabulary and assign an
index to every unique word, use the word index to convert word
sequence to integer sequence, and append zero to the maximum
length of the sequence to obtain a uniform sequence of length.
The last step before the model build is to use two categorical
functions of Keras to make the target variables as one-hot
encoding.
Implementations and Hyperparameters

For this task, two different recurrent networks (LSTM and
GRU) and their bi-directional. As the primary aim is to compare
each model fairly with the same number of parameters. The
implementation of this model is with deep learning framework
Keras (Keras, n.d.). This is a deep learning API running a

7

Obeta, S. I., et al., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

machine learning platform TensorFlow without showing the
expression of gradients as they are computed automatically.
The Embedding layer in Keras automatically creates the matrix
which maps the integer to the embedding. They are learned
during the backward propagation.

In Keras there two ways of building a model. The first is
through a sequential API or functional API.

Due to the long time required to train the model, we tried a
small set of values. The first layer is the embedding which passes
vocabulary size and input length. I chose 100 as my embedding
layer which means that each word will be represented by a
vector of 100 numbers. This is similar to word2Vec. The input
length shows the size of the sequence in which 500 was used
as seen in fig 4.3. I imported the sequence, LSTM, BiLSTM,
dense, embedding layer, GRU, and BiGRU. I imported the early
stopping which helps the training process in the neural network
at the right time. When the validation loss keeps increasing for
some epoch which is specified, the training stops.

To avoid the model from overfitting, we used the early
stopping techniques and stopped at a point when the evaluations
stopped to improve.

The early stopping saves a copy of the model. We choose
300 as the LSTM layer, a time step of 0.1, recurrent drop out
as 0.2 dense layers as 64 neurons, output Layer 9 neuron of
the 9 categorical tags. The optimizer used was Adam and loss
categorical cross-entropy for classification. Batch size at 100
and epoch of 100.

Result and Analysis
In this section, I looked at the model built for each model, its

diagnostic plots for a better understanding of the performance of
the model over time.

LSTM

Figure 4.1: LSTM model summary.
A step forward was to fit the model to the training data

and evaluate on hold outset. The metrics to test the model is
accuracy. The early stopping model will be saved when we
get the best size. I used a batch size of 1200, epoch as 100
although we have early stopping in place. Each of the epoch for
LSTM training takes approximately 3525 seconds but on a fast
GPU, it took 80 seconds to train. The validation accuracy kept
increasing and after some time the validation loss and accuracy
stops improving. That’s when our model stops training. Fig 5.2
shows the training loss continued to decrease but validation loss
decreased at a point became stable. We used the classification
model to create a report on a validation set with F1 score and Fig
5.3 gives us a score of 0.91 percent.

GRU

The architecture was swapped and further to fitting to the
training data and evaluate on hold-outset. The metrics to test the

model is accuracy. The early stopping model is saved at the best
size. A batch size of 1200, epoch as 100 although we have early
stopping in place was set. Each of the epoch for GRU training
takes approximately 207 seconds but on a fast GPU, it took 48
seconds to train. The validation accuracy kept increasing and
after some time the validation loss and accuracy stop improving.
The classification model to create a report on the validation set
with F1 gives us a score of 0.92 percent in Fig 4.5

Figure 4.2: Diagnostic plot.

Figure 4.3: LSTM score.

Figure 4.4: GRU Model Summary.

Figure 4.5: GRU score.

Bi-direction analysis of GRU and LSTM.

The same hyperparameters for GRU and LSTM was used
for their bi-directional and below are the outcome. BiGRU
performed better than BiLSTM.

BiLSTM, the epoch training time was 225 seconds. Recall
that it took LSTM 3525 seconds. BiLSTM trained with half of
the time it will take LSTM to train.

BiGRU trained with 45 seconds each epoch which is 20% of
the time it took a full GRU to train. Very fast indeed.

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Obeta, S. I., et al.,

8

Conclusion
This research aimed to achieve effectively three main goals:

• Categorising website-based content.

• Utilising the sequence information to make a prediction
based on the context.

• Providing an analysis of the characteristics of LSTM and
GRU with an extension to their bi-directional on-text data
with a recommendation on the best model for text data
classification.

The goals were achieved on a text dataset that contains 54,445
website contents. Python programming language was used on
google Colab with Keras to perform all necessary text cleaning
and model build. The LSTM, GRU, BiLSTM, and BiGRU were
built with the Keras function but first was the embedding layer
that creates the embedding matrix by mapping the integer to the
embedding for learning during the backpropagation. The output
label is converted to an integer and a one-hot vector. Padding,
sequence distribution, and tokenisation were done on the text
data as part of text classification. The model layer (GRU, LSTM,
BiGRU, and BiLSTM) was built with regularisation techniques
and a recurrent dropout to drop recurrent hidden units between
time steps.

While there has been a different school of thought that GRU
could be a better replacement for LSTM, the outcome of such
research hinted LSTM performs better than GRU, although it was
done on a small text dataset. Apart of small text data, computing
power was the case of the experiment, which took more than 24
hours for one model to be built. Hence, they decided to make a
small data set with LSTM performing better.

My approach to this work and using a large text dataset
provides new insight and clearly illustrates that GRU performed
better than LSTM in terms of accuracy and training time. It is a
better algorithm for text data classification. Comparing BiLSTM
and BiGRU, BiGRU performed better with 20% less time than
BiLSTM.

To better understand the implication of these studies and
how gated unit improves learning and solidify this work’s

contribution, more experiments will be required in the future
with.

Reference
1. Akash, S. (2022). Anomaly detection for temporal data using

long short term. Sweden, Royal Institute of Technology.

2. Alex, G., Abdel-rahman, M. & Goeffery, H. (2013). Speech
recognition with deep recurrent neural network. IEEE
internationa conference, pp. 6645-6649. doi: https://doi.
org/10.1109/ICASSP.2013.6638947

3. Ankit K, Peter O, Mohit I, James B, Ishaan G, Victor Z, Romain
P, & Richard S. (2016). Ask me anything: Dynamic memory
networks for natural language processing. s.l., Computer and
language. arXiv:1506 07285v5. doi: https://doi.org/10.48550/
arXiv.1506.07285

4. Bengio, Y., Simard, P. & Fransconi, P. (1994). Learning long
term dependencywith gradient descent is difficult. s.l., IEEE
transaction on neural network. 1994;5(2), pp. 157-66. doi:
10.1109/72.279181

5. BSCS and Videodiscovery, I., (2000). [Online] Available at:
https://science.education.nih.gov/supplements/webversions/
BrainAddiction/guide/lesson2-1.html [Accessed 21/07/2020
July 2020].

6. Charu, A. C., & Cheng Xiang, Z. (2012). Minint Text Data. 4 ed.
s.l.: Springer, Boston, MA.

7. Charu, C. A. (2018). Neural Networks and Deep Learning.
Switzerland: Springer International Publishing AG, part
of Springer Nature. Retrieved from file:///C:/Users/RAJ/
Downloads/9783319944623.pdf

8. Casanueva, I. Temčinas, T., Gerz, D., Henderson, M., & Vulić, I.
(2020). “Efficient intent detection with dual sentence encoders,”
Proceedings of the 2nd Workshop on Natural Language
Processing for Conversational AI [Preprint]. Available at: https://
doi.org/10.18653/v1/2020.nlp4convai-1.5

9. Cho, k., Bart van, M., Dzmitry, B. & Yoshua, B. (2014). Encoder
Decorder Approach. Computer Science and Language, pp.
1724-1734.

10. Christain, J., Yoshua, B., Rejean, D. & Pascal, V. (2003). A
neural Probabilistic Language Model. Journal of Machine
Learning Research, pp. 1137-1155. Retrieved from https://www.
jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

11. David, L. D. (1992). An Evaluation of Phrasal and Clustered
Representations on a Text Categorisation Task. Center for
Information and Languiage Studies University of Chicago,
Volume 1. Doi: http://dx.doi.org/10.1145/133160.133172

12. David, R. E., Geoffrey, H. E. & Ronald, W. J. (1986). Learning
representation by back propagating errors. Semantic scholar,
Volume 323, pp. 533-538. doi: https://doi.org/10.1038/323533a0

13. Duyu, T., Bing, Q., Xiaocheng, F. & Ting, L. (2016). Effective
LSTM for target-dependent sentiment classification. 26th
conference on computational and linguistics, pp. 3298-3307.
Retrieved from https://aclanthology.org/C16-1311.pdf

14. Dzmitry, B., Kyunghyun, C. & Yoshua, B. (2014). Neural
machine translation by jointly learning to align and translate.
Computational language[cs.CL]. doi: https://doi.org/10.48550/
arXiv.1409.0473

15. Frank, R. (1958). The perceptron: a probabilistic model for
information storage and organization in the brain. Psychological
Review, Volume 65, p. 6. doi: https://doi.org/10.1037/h0042519

16. Graves, A. (2012). Supervised sequence labelling with recurrent
neural networks. 2 ed. s.l.: ISBN 978-3-642-24797-2.

17. Guozheng, R., Weihang, H., Zhiyoung, F. & Qiong, C. (2018).
LSTM with sentence representation for documents-level
sentiment classifcation. Neurocomputing, Volume 308, pp.
49-57. doi: https://doi.org/10.1016/j.neucom.2018.04.045

Figure 4.6: Bi-directional GRU.

Figure 4.7: Bi-direction LSTM.

https://doi.org/10.1109/ICASSP.2013.6638947
https://doi.org/10.1109/ICASSP.2013.6638947
https://arxiv.org/abs/1506.07285v5
https://doi.org/10.48550/arXiv.1506.07285
https://doi.org/10.48550/arXiv.1506.07285
https://doi.org/10.1109/72.279181
https://science.education.nih.gov/supplements/webversions/BrainAddiction/guide/lesson2-1.html
https://science.education.nih.gov/supplements/webversions/BrainAddiction/guide/lesson2-1.html
file:///C:/Users/RAJ/Downloads/9783319944623.pdf
file:///C:/Users/RAJ/Downloads/9783319944623.pdf
https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://dx.doi.org/10.1145/133160.133172
https://doi.org/10.1038/323533a0
https://aclanthology.org/C16-1311.pdf
https://doi.org/10.48550/arXiv.1409.0473
https://doi.org/10.48550/arXiv.1409.0473
https://doi.org/10.1037/h0042519
https://doi.org/10.1016/j.neucom.2018.04.045

9

Obeta, S. I., et al., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

18. Junyoung, C., Caglar, G., Kyung Hyun, C. & Yoshua, B.
(2014). Emperical evaluation of gated recurrent neural
networks on sequence modeling. Neural and Evolutionary
Computing. arXiv:14123555y1. doi: https://doi.org/10.48550/
arXiv.1412.3555

19. Kelvin, L. & Alex, W. H. (1990). A time delay neural network
architecture for isolated word recognition. Pergamon Press
Plc, Volume 3(1), pp. 22-43. doi: https://doi.org/10.1016/0893-
6080(90)90044-L

20. Ke, T., Arianna, B. & Christof, M., (2016). Recurrent memory
networks for language modeling. Proceeding of NAACL-HLT,
pp. 321-331. doi: http://dx.doi.org/10.18653/v1/N16-1036

21. Micheal, M. C. (1991). Induction of multiscale temporal structure.
s.l.: Neural information processing system conference.
Retrieved from https://papers.nips.cc/paper/1991/hash/53fde9
6fcc4b4ce72d7739202324cd49-Abstract.html

22. Micro, R., Philemon, B., Maurizio, O. & Yoshua, B. (2018).
Light gated recurrent units for speech Recognition. Electrical
Engineering and system science Audio and Speech processing,
Volume 2(2), pp. 92-102. doi: https://doi.org/10.48550/
arXiv.1803.10225

23. Mikolov, T., Kai, C., Greg, C. & Jeffrey, D. (2013). Efficient
estimation of word representations in Vector space.
aXiv:1301.3781v3[cs.CL]. doi: https://doi.org/10.48550/
arXiv.1301.3781

24. Missinglink.ai, n.d. Missinglink.ai. [Online] Available at: https://
missinglink.ai/guides/neural-network-concepts/7-types-neural-
network-activation-functions-right/ [Accessed 25 July 2020].

25. Pascanu, R., Mikolov, T. & Bengio, Y. (2013). On the difficulty
of training recurrent neural networks. 30th International
Conference proceeding on Machine Learning. PMLR 28(3), pp.
1310-1318. Retrieved from https://proceedings.mlr.press/v28/
pascanu13.html

26. Paul, W. J. (1990). Backpropagation through time: what it
does and how to do it. s.l., Computer Science, Mathematics.
Proceeding of IEEE, Volume 78, pp. 1550-1560. doi: https://doi.
org/10.1109/5.58337

27. Pengfei, L., Xipeng, Q. & Xuanjing, H. (2016). Recurrent
neural network for text classifcation with multi-tasking learning.
Computation and Language (cs.CL). arXiv.org. doi: https://doi.
org/10.48550/arXiv.1605.05101

28. Piccinni, G. (2004). The First Computational Theory of Mind
and Brain: A Close Look at Mcculloch and Pitts’s “Logical
Calculus of Ideas Immanent in Nervous Activity”. Synthese,
141(2):175–215, 2004, p. 222. doi: https://doi.org/10.1023/
B:SYNT.0000043018.52445.3e

29. Richard, S. et al., (2016). Recursive deep model for semantic
compositionality over a sentiment treebank. Standard ford
University 94305 USA. pp. 1631–1642. Retrieved from https://
aclanthology.org/D13-1170/

30. S. Sheng, M, Holbrook, P. Kumarahuru, L.F. Cranor, & J.
Downs. (2010). Who falls fo phish? a demographic analysis
of phishing susceptibility and effectiveness of interactions.
New York, NY, USA ACM, s.n. pp. 373–382. doi: https://doi.
org/10.1145/1753326.1753383

31. Sebastian, R. (2016). An overview of gradient descent
optimisation algorithms. Computer science, Machine Learning.
Volume 1. arXiv:1609.04747, doi: https://doi.org/10.48550/
arXiv.1609.04747.

32. Sepp, H. & Jurgen, S. (1997). Long short term memory.
Neural computation, Volume 9(8), pp. 1735-1780. https://doi.
org/10.1162/neco.1997.9.8.1735

33. Srividhya, V. & Anitha, R. (2010). Evaluating preprocessing
techniques in Text categorisation. s.l., International Journal
of Computer Science and application. Retrieved from http://
sinhgad.edu/ijcsa-2012/pdfpapers/1_11.pdf

34. Sutskever, I., Oriol, V. & Quoc, V. (2014). Sequence to sequence
learning with neural networks. arXiv:1409.3215y3[cs.CL].
https://doi.org/10.48550/arXiv.1409.3215

35. Tobias, L. & Matthias, R. (2017). Understanding Consumer
Behaviour with recurrent neural networks. s.l.: s.n. Retrieved
from https://doogkong.github.io/2017/papers/paper2.pdf

36. Tomas, M., Martin K., Luka´s B., Jan “Honza” C., & Sanjeev
K. (2010). Recurrent neural network based language model.
Interspeech 2010, pp. 1413-1421. Retrieved from https://
www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_
interspeech2010_IS100722.pdf

37. Vidhya, A. 207. Analytic Vidhya. [Online] Available at: https://
courses.analyticsvidhya.com/courses/take/natural-language-
processing-nlp/lessons/6014710-getting-started-with-neural-
network [Accessed 22 July 2020].

38. Xu, N., Mao, W., Wei, P., & Zeng, D. (2021) “MDA: Multimodal
Data Augmentation Framework for boosting performance
on sentiment/emotion classification tasks,” IEEE Intelligent
Systems, 36(6), pp. 3–12. doi: https://doi.org/10.1109/
mis.2020.3026715

39. Zhang, Y., Zhang, R., Mensah, S., Liu, X., & Mao, Y. (2022).
“Unsupervised sentence representation via contrastive learning
with mixing negatives,”. Proceedings of the AAAI Conference on
Artificial Intelligence, 36(10), pp. 11730–11738. doi: https://doi.
org/10.1609/aaai.v36i10.21428

40. Jiang, T., & Gao, X. (2022). “Deep learning of subject context
in ideological and political class based on recursive neural
network,”. Computational Intelligence and Neuroscience, Vol
2022, pp. 1–8. doi: https://doi.org/10.1155/2022/8437548

41. Wu, D. Wu, L., Huang, J., & Wang, X. (2022). “Isa-PredRNN: An
improved self-attention predRNN network for Spatiotemporal
Predictive Learning,”. 2022 International Conference
on Image Processing, Computer Vision and Machine
Learning (ICICML) [Preprint]. doi: https://doi.org/10.1109/
icicml57342.2022.10009868

42. Van Gompel, J., Spina, D. & Develder, C. (2022). “Satellite
based fault diagnosis of photovoltaic systems using recurrent
neural networks,”. Applied Energy, 305, p. 117874. doi: https://
doi.org/10.1016/j.apenergy.2021.117874

https://doi.org/10.48550/arXiv.1412.3555
https://doi.org/10.48550/arXiv.1412.3555
https://doi.org/10.1016/0893-6080(90)90044-L
https://doi.org/10.1016/0893-6080(90)90044-L
http://dx.doi.org/10.18653/v1/N16-1036
https://papers.nips.cc/paper/1991/hash/53fde96fcc4b4ce72d7739202324cd49-Abstract.html
https://papers.nips.cc/paper/1991/hash/53fde96fcc4b4ce72d7739202324cd49-Abstract.html
https://doi.org/10.48550/arXiv.1803.10225
https://doi.org/10.48550/arXiv.1803.10225
https://arxiv.org/abs/1301.3781v3
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.48550/arXiv.1301.3781
https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
https://proceedings.mlr.press/v28/pascanu13.html
https://proceedings.mlr.press/v28/pascanu13.html
https://doi.org/10.1109/5.58337
https://doi.org/10.1109/5.58337
https://doi.org/10.48550/arXiv.1605.05101
https://doi.org/10.48550/arXiv.1605.05101
https://doi.org/10.1023/B:SYNT.0000043018.52445.3e
https://doi.org/10.1023/B:SYNT.0000043018.52445.3e
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://doi.org/10.1145/1753326.1753383
https://doi.org/10.1145/1753326.1753383
https://arxiv.org/abs/1609.04747v2
https://doi.org/10.48550/arXiv.1609.04747
https://doi.org/10.48550/arXiv.1609.04747
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://sinhgad.edu/ijcsa-2012/pdfpapers/1_11.pdf
http://sinhgad.edu/ijcsa-2012/pdfpapers/1_11.pdf
https://arxiv.org/abs/1409.3215v3
https://doi.org/10.48550/arXiv.1409.3215
https://doogkong.github.io/2017/papers/paper2.pdf
https://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
https://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
https://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
https://courses.analyticsvidhya.com/courses/take/natural-language-processing-nlp/lessons/6014710-getting-started-with-neural-network
https://courses.analyticsvidhya.com/courses/take/natural-language-processing-nlp/lessons/6014710-getting-started-with-neural-network
https://courses.analyticsvidhya.com/courses/take/natural-language-processing-nlp/lessons/6014710-getting-started-with-neural-network
https://courses.analyticsvidhya.com/courses/take/natural-language-processing-nlp/lessons/6014710-getting-started-with-neural-network
https://doi.org/10.1109/mis.2020.3026715
https://doi.org/10.1109/mis.2020.3026715
https://doi.org/10.1609/aaai.v36i10.21428
https://doi.org/10.1609/aaai.v36i10.21428
https://doi.org/10.1155/2022/8437548
https://doi.org/10.1109/icicml57342.2022.10009868
https://doi.org/10.1109/icicml57342.2022.10009868
https://doi.org/10.1016/j.apenergy.2021.117874
https://doi.org/10.1016/j.apenergy.2021.117874

	_GoBack
	_Hlk124851990

