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ABSTRACT

This paper presents a novel LLM-augmented machine learning framework for cross-domain sentiment analysis that combines
traditional ML approaches with large language model assistance. The proposed framework integrates TF-IDF feature extraction,
ensemble classification methods (SVM, Random Forest, Gradient Boosting) and dimensionality reduction techniques (LSA, LDA)
to achieve competitive performance while maintaining superior computational efficiency and interpretability. Evaluated across
three heterogeneous domains-electronics, food & beverage and apparel reviews-the framework achieves 83.7% accuracy with
only 2.7% cross-domain degradation. Key innovations include transparent LLM integration for research augmentation, weighted
ensemble voting mechanisms and systematic hyperparameter optimization via GridSearchCV. The framework demonstrates
practical viability for resource constrained environments, achieving 20-50x faster inference (2.1ms vs 45-120ms) and 8-10%
smaller model size compared to deep learning alternatives, while maintaining explainability crucial for regulated domains.

Index Terms: Machine Learning, Sentiment Analysis, TF-IDE, Cross-Domain Transfer Learning, Ensemble Methods, LLM
Integration, Natural Language Processing

1. Introduction scalable, efficient and interpretable solutions.

The exponential growth of unstructured textual data across ~ A. Background and motivation
digital platforms has created unprecedented demand forautomated
semantic analysis systems capable of extracting meaningful
insights from diverse linguistic contexts. Organizations generate
terabytes of text daily through customer reviews, social media
interactions and transactional communications, necessitating

Traditional sentiment analysis approaches relied on manual
annotation by domain experts-an approach that is prohibitively
expensive and non-scalable at contemporary data volumes.
While deep learning architectures, particularly transformers and
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large language models, have revolutionized NLP, they demand
substantial computational resources, extensive labelled datasets
and sophisticated infrastructure for deployment.

This research investigates an alternative paradigm: properly
engineered classical machine learning techniques that achieve
competitive accuracy while offering profound advantages in
computational efficiency, interpretability and cross-domain
generalization. The framework uniquely integrates LLM
assistance (ChatGPT and Perplexity Al) transparently for
literature synthesis and technical debugging, establishing a
reproducible methodology for contemporary research practices.

B. Research contributions
The primary contributions of this work include:

* A comprehensive LLM-augmented ML framework
combining TF-IDF, LSA, LDA and ensemble methods for
semantic analysis.

*  Systematic evaluation demonstrating 83.7% accuracy with
2.7% cross-domain degradation across three domains.

* Quantitative comparison revealing 20-50% inference
speedup and 8-10x memory reduction versus deep learning.

*  Transparent integration methodology for LLM research
assistance tools.

* Actionable recommendations for practitioners balancing
accuracy, efficiency and interpretability.

C. Paper organization

The remainder of this paper is organized as follows: Section
II reviews related work and establishes theoretical foundations.
Section III presents the proposed methodology and framework
architecture. Section IV details experimental setup and datasets.
Section V presents comprehensive results and analysis. Section
VI discusses implications and comparisons with alternative
approaches. Section VII concludes with limitations and future
directions.

2. Related Work and Theoretical Foundations
A. Semantic analysis paradigms

Semantic analysis encompasses automated systems designed
to extract, represent and reason about meaning in natural
language text!. Contemporary approaches employ two primary
paradigms: the statistical paradigm models meaning through
distributional hypothesis, while the neural paradigm grounds
meaning in learned continuous representations.

B. Feature extraction techniques

TF-IDF: Term Frequency-Inverse Document Frequency
remains widely deployed for text classification with extensive
empirical validation'?. TF-IDF quantifies term importance
by combining term frequency within documents and inverse
document frequency across corpus:

(t,d)) x log <l> (1)
TF-IDF(t,d) = log(1 + count dfft) (1)

where N represents total documents and df(t) is document
frequency of term t.

* Latent semantic analysis: LSA addresses TF-IDF
limitations by applying Singular Value Decomposition to
discover latent semantic structure®:
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where A is the m x n term-document matrix, truncated to k
dimensions (k = 50 — 100) to capture essential semantics.

Latent dirichlet allocation: LDA provides probabilistic
topic modelling, treating documents as mixtures of latent topics®:

P(d) = / P(6a) ] Pl B)P(=10a)db 5

C. Classification algorithms

*  Support vector machines: SVMs find optimal decision
boundaries by maximizing margin between classes. For
multiclass problems, one-versus-rest decomposition trains
k binary classifiers.

e Random forest: Random Forest aggregates predictions
across hundreds of decision trees trained on random
data subsamples®. Empirical results demonstrate 84.99%
accuracy on anxiety detection and 98.6% on large-scale
datasets’.

*  Gradient boosting: Gradient Boosting sequentially trains
weak learners to correct predecessor errors through gradient
descent in function space, typically achieving superior
individual accuracy but with increased computational cost.

D. Research gaps
Critical gaps identified include:

Limited comprehensive comparison of ML approaches with
systematic ensemble voting.

Insufficient
capabilities.

investigation of cross-domain generalization

Lack of transparent LLM integration methodologies in academic
research.

Inadequate practical guidance for ML vs DL paradigm selection.
3. Proposed Methodology
A. Framework architecture

Figure 1
architecture.

illustrates the comprehensive ML pipeline

B. Data preprocessing pipeline

The preprocessing
through:

stage standardizes text representation

e Lowercasing: Eliminates case-based feature duplication
e Punctuation removal: Filters non-semantic characters

e Stopword removal: Removes high-frequency function
words

*  Tokenization: Decomposes text into atomic units
* Length filtering: Removes reviews <10 tokens

C. Multi-modal feature extraction

The framework employs complementary feature extraction
approaches:

* TF-IDF with N-grams: Captures surface-level term
importance and phrasal semantics through unigrams and
bigrams (max features: 5000).

* LSA dimensionality reduction: Projects sparse TF-IDF
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matrices to 50-dimensional semantic space via truncated
SVD, eliminating noise while preserving essential structure.

* LDA topic modelling: Discovers 5-10 latent topics per
domain, providing interpretable thematic representations
complementing surface features.

D. Ensemble classification strategy

The ensemble mechanism combines diverse classifiers
through soft voting:

>, wiPi(cilz)
Zj Wj

1.0, WRF =

P(c|z) = “)

where Wsvm = 1.2, wgg = 1.1

based on cross-validation performance. Final prediction: y”
= argmaxi P(cifx).

E. Hyperparameter optimization

GridSearchCV performs exhaustive search over hyperparameter
spaces with 5-fold cross-validation:

* SVM: C € {0.1,1,10}, kernel € {rbf,poly}

e RF: nest € {50,100,200}, depth € {10,20, None}

* GB:lIre€ {0.01,0.1}, nest € {50,100,200}

F. LLM integration methodology

Transparent LLM integration enhances research efficiency:

* Perplexity AIl: Literature review, citation discovery,
research synthesis.

e ChatGPT: Technical debugging, algorithm explanation,
code assistance.

All LLM-assisted content underwent manual verification,
ensuring academic rigor while leveraging Al efficiency gains.

4. Experimental Setup
A. Datasets and domains

Three heterogeneous consumer review domains evaluate
framework performance:

Sentiment labels derived from star ratings: 1-2 stars (negative),
3 stars (neutral), 4-5 stars (positive). Train-test split: 70%-30%
(15,190 training, 6,510 testing).
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Figure 1: LLM-Augmented ML Framework Architecture for
Cross-Domain Sentiment Analysis.
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Table 1: Dataset Characteristics.

Domain Reviews Avg Length Classes
Electronics 8,000 42 tokens 3
Food & Beverage | 6,500 38 tokens 3
Apparel 7,200 35 tokens 3
Total 21,700 39 tokens 3

B. Evaluation metrics

_ TP+TN
Accuracy: Acc— TPHTN+FP+FN

Weighted F1-Score: Harmonic mean of precision and recall
weighted by class frequency:

F]_w: —
—~ N P +R;

©)

Cross-domain transfer: Accuracy degradation when models
trained on one domain evaluate on unseen domains.

C. Implementation details
Framework implemented in Python 3.8 using:

* scikit-learn 1.0: ML algorithms, preprocessing
* pandas 1.3: Data manipulation
e numpy 1.21: Numerical computation

Hardware: Intel Core i3, 16GB RAM (CPU-only). Training
time: 2-4 minutes per domain.

5. Results and Analysis
A. Baseline performance

(Table 2) presents baseline CountVectorizer + Random
Forest results.

Table 2: Baseline Performance (Electronics Domain).

Metric Value
Accuracy 78.3%
Precision 0.782

Recall 0.773

Weighted F1-Score | 0.774

Training Time 1.2s

B. Feature extraction impact

(Figure 2) illustrates progressive accuracy improvements
through feature engineering. Key findings:

TF-IDF unigrams: +1.8% improvement (80.1%)

TF-IDF bigrams: +2.9% improvement (81.2%) e« TF-IDF
n-grams: +3.2% improvement (81.5%)

C. Classifier performance comparison

(Table 3) compares individual classifier performance with
optimized hyperparameters.

Classifier Accuracy | F1-Score | Time (s)
SVM (RBF) 82.1% 0.819 1.5
Random Forest 81.9% 0.817 1.8
Gradient Boosting 82.9% 0.827 2.3
Ensemble 83.7% 0.836 32
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Figure 2: Feature Extraction Technique Comparison.

D. Hyperparameter optimization impact

GridSearchCV optimization yielded marginal but consistent
improvements (Figure 3):

84| i

Accuracy(%)

I
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Figure 3: Hyperparameter Optimization Impact.

Optimal ensemble achieved 83.7% accuracy (+1.4% vs.
non-optimized, +5.4% vs. baseline).

E. Dimensionality reduction analysis
(Table 4) compares LSA and LDA performance.

LSA achieves 100x dimensionality reduction with only 1.4%
accuracy trade-off, demonstrating practical value for resource-
constrained deployment.

F. Confusion matrix analysis
Key observations:

* Strong positive classification: 95.4% recall for positive
sentiment.

Table 4: Dimensionality Reduction Comparison.

Approach Dims | Accuracy | Time (s)
TF-IDF Only 5,000 | 83.7% 32
LSA (50) 50 82.3% 0.9
LDA (5) 5 81.4% 1.2
LSA + TF-IDF 5,050 | 83.5% 2.1
LDA + TF-IDF 5,005 | 83.6% 2.8
All Combined 5,055 | 83.6% 2.8

*  Neutral class challenge: 69.7% recall—inherent ambiguity

in mixed sentiment.
* Minimal negative-positive  confusion:

misclassifications (1.2%).

Only 37
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G. Cross-domain generalization

(Figure 4) visualizes cross-domain transfer performance.
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Figure 4: Cross-Domain Transfer Performance.

Remarkably modest 2.7% average degradation demonstrates
strong cross-domain generalization, with models achieving 97%
of within-domain performance on unseen domains.

H. Computational efficiency analysis
The framework achieves dramatic computational advantages:

*  Training: 1125-2250x faster
e Inference: 21-57x faster
e Model size: 8.3-10.2x smaller

*  Memory: 11-22x reduction
6. Discussion
A. Feature engineering dominance

Feature engineering provided the largest performance gains
(1+3.2%), substantially exceeding hyperparameter optimization
(+1.4%). This empirically validates prioritizing feature
extraction quality over algorithm sophistication-a critical insight
for practitioners (Tables 5,6 and 7).

Table 5: Confusion Matrix - Optimized Ensemble (Electronics

Domain).
Predicted Class Metrics
True Negative | Neutral | Positive | Precision | Recall | F 1 - | Support
Class Score
Negative | 1847 98 15 0.922 0.942 | 0.932 | 1960
Neutral 134 512 89 0.748 0.697 | 0.722 | 735
Positive | 33 76 2097 0.951 0.954 | 0.953 | 2145
Weighted Average 0.908 0.914 | 0.911 | 4840
Table 6: Cross-Domain Generalization Results.
Transfer Path Accuracy Degradation
Electronics — Food 81.20% -2.50%
Electronics — Apparel 80.80% -2.90%
Food — Electronics 81.50% -2.20%
Food — Apparel 80.90% -2.80%
Apparel — Electronics 81.30% -2.40%
Apparel — Food 81.10% -2.60%
Average Degradation 81.10% -2.70%

B. Ensemble voting mechanism

Soft voting’s 0.7% improvement reflects complementary error
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correction. Analysis revealed:

*  Classifiers agreed on 95.6% of samples.
*  SVM-RF disagreement: 3.2% of samples.
*  SVM-GB disagreement: 2.8% of samples.
*  Three-way disagreement: 0.4% of samples.
High agreement limits error reduction opportunity but

compounds substantially at scale (7,000 improvements per
million predictions).

Table 7: ML vs. Deep Learning Computational Comparison.

Metric ML (Ours) DL (BERT)
Training Time 3.2s 3600-7200s
Inference (per doc) 2.1ms 45-120ms
Model Size 42 MB 350-430 MB
Memory (inference) 180 MB 2-4 GB
Hardware CPU GPU
Speedup 1x 20-50%

C. Cross-domain transfer mechanisms
Three hypotheses explain robust cross-domain generalization:

e HI: Universal Sentiment Markers - Positive (“excellent,”
“amazing”) and negative (“terrible,” “waste”) sentiment
expressions transcend domains.

e  H2: Domain-Invariant Semantic Structure - LSA captures
abstract relationships (quality-price tradeoffs) recurring
across domains.

* H3: Transferable Thematic Content - LDA discovers
universal topics (quality, value, service) manifesting
differently across domains.

D. Neutral class ambiguity

The 69.7% neutral class recall reflects fundamental semantic
ambiguity. Neutral sentiment (3-star ratings) represents mixed
experiences combining positive and negative elements (“good
quality but expensive”). Sequential classifiers struggle with this
inherent tension.

Potential remediation strategies:

* Aspect-based analysis:
sentiment.

Separate quality and price

Table 8: Comprehensive ML vs. Deep Learning Comparison.
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* Confidence thresholding: Reject ambiguous cases for
human review.

e Hierarchical classification: Multi-stage pipeline focusing
on neutral discrimination.

E. ML vs. DL trade-off analysis

F. LLM integration impact

Transparent LLM integration provided significant research
efficiency gains:

e  Perplexity Al:

* Literature review acceleration: 60%-time reduction.

e Citation discovery: 142 relevant papers identified.

*  Research synthesis: Automated summary generation.

ChatGPT:

* Debugging assistance: 75% faster error resolution.

e Algorithm Clarified  mathematical

formulations.

explanation:

*  Code optimization: Identified efficiency improvements.

Critical success factor: All LLM-generated content underwent
manual verification, maintaining academic rigor while leveraging
Al efficiency.

G. Practical deployment recommendations

Choose ML when:

* Labelled data limited (<1K examples).

» Interpretability required (regulated domains).

*  Computational resources constrained (CPU-only).
¢ Cross-domain transfer needed.

* Inference latency critical (<5ms).

Choose DL when:

Large labeled datasets (>10K examples).

*  Accuracy paramount regardless of cost.

*  Complex linguistic phenomena.

e Multi-modal learning needed.

* Unlabeled data abundant for pre-training (Table 8).

Dimension ML (Ours) LSTM BERT Winner

Accuracy (within-domain) | 83.70% 85-87% 86-89% DL (+2-5%)

Cross-domain degradation | 2.70% 8-12% 10-15% ML (3-5x better)

Training time (1K docs) 3.1s 300-600s 3600-7200s ML (100-2000x)

Inference latency 2.1ms 45-80ms 80-120ms ML (20-57x%)

Model size 42 MB 120-180 MB 350-430 MB ML (3-10x)

Labeled data required 500-1K 5K-10K 10K-50K ML (10-50x%)

Interpretability High Low Very Low ML

Hardware requirement CPU GPU GPU ML

Recommendation ML: Resource-constrained, interpretability-critical, small data; DL: Large data, accuracy paramount

7. Limitations and Future Work
A. Study limitations

* Language scope: English-only evaluation limits

multilingual generalizability.

* Domain homogeneity: Consumer reviews represent
narrow text genre.

* Sentiment granularity: Three-class simplification may
miss nuanced sentiment.
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¢ DLcomparison: No controlled transformer implementation.

* Hyperparameter search: Limited due to

computational constraints.

ranges

B. Future research directions

* Aspect-based sentiment analysis: Investigate aspect
extraction and aspect-level sentiment to resolve neutral
class ambiguity.

*  Multilingual extension: Evaluate framework performance
on morphologically complex languages and non-Latin
scripts.

*  Cross-domain adaptation: Develop domain adaptation
techniques leveraging unlabelled target domain data.

* Linguistically-motivated features: Integrate dependency
parsing, semantic role labelling and discourse structure.

*  Human-Al collaboration: Design interactive interfaces
enabling human-in-the-loop refinement.

¢ Real-time streaming: Extend framework for continuous
learning on streaming data.

8. Conclusion

This paper presented a comprehensive LLM-augmented
machine learning framework for cross-domain sentiment
analysis, demonstrating that properly engineered classical
ML approaches achieve competitive accuracy (83.7%) while
maintaining profound advantages in computational efficiency
(20-50x faster), interpretability (transparent feature importance)
and cross-domain generalization (2.7% degradation).

Key contributions include:

*  Systematic integration of TF-IDF, LSA, LDA and ensemble
methods achieving 83.7% accuracy.

*  Empirical validation of 97% cross-domain performance
retention across three domains.

*  Quantitative evidence of 20-50x inference speedup and
8-10x memory reduction versus deep learning.

e Transparent LLM integration methodology establishing
reproducible research practices.

*  Actionable recommendations balancing accuracy, efficiency
and interpretability.

The framework demonstrates practical viability for resource-
constrained environments, regulated domains requiring
explainability and scenarios with limited labelled data-
contexts where deep learning approaches remain infeasible or
inappropriate.

As Al deployment increasingly enters regulated environments
demanding transparency, developing countries lacking GPU
infrastructure and edge applications requiring low latency,
machine learning approaches deserve renewed attention. This
research contributes empirical evidence supporting strategic ML
selection when computational efficiency, interpretability and
cross-domain transfer outweigh marginal accuracy gains from
deep learning.
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