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 A B S T R A C T 
This paper presents a novel LLM-augmented machine learning framework for cross-domain sentiment analysis that combines 

traditional ML approaches with large language model assistance. The proposed framework integrates TF-IDF feature extraction, 
ensemble classification methods (SVM, Random Forest, Gradient Boosting) and dimensionality reduction techniques (LSA, LDA) 
to achieve competitive performance while maintaining superior computational efficiency and interpretability. Evaluated across 
three heterogeneous domains-electronics, food & beverage and apparel reviews-the framework achieves 83.7% accuracy with 
only 2.7% cross-domain degradation. Key innovations include transparent LLM integration for research augmentation, weighted 
ensemble voting mechanisms and systematic hyperparameter optimization via GridSearchCV. The framework demonstrates 
practical viability for resource constrained environments, achieving 20-50× faster inference (2.1ms vs 45-120ms) and 8-10× 
smaller model size compared to deep learning alternatives, while maintaining explainability crucial for regulated domains.

Index Terms: Machine Learning, Sentiment Analysis, TF-IDF, Cross-Domain Transfer Learning, Ensemble Methods, LLM 
Integration, Natural Language Processing

1. Introduction
The exponential growth of unstructured textual data across 

digital platforms has created unprecedented demand for automated 
semantic analysis systems capable of extracting meaningful 
insights from diverse linguistic contexts. Organizations generate 
terabytes of text daily through customer reviews, social media 
interactions and transactional communications, necessitating 

scalable, efficient and interpretable solutions.

A. Background and motivation
Traditional sentiment analysis approaches relied on manual 

annotation by domain experts-an approach that is prohibitively 
expensive and non-scalable at contemporary data volumes. 
While deep learning architectures, particularly transformers and 
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large language models, have revolutionized NLP, they demand 
substantial computational resources, extensive labelled datasets 
and sophisticated infrastructure for deployment.

This research investigates an alternative paradigm: properly 
engineered classical machine learning techniques that achieve 
competitive accuracy while offering profound advantages in 
computational efficiency, interpretability and cross-domain 
generalization. The framework uniquely integrates LLM 
assistance (ChatGPT and Perplexity AI) transparently for 
literature synthesis and technical debugging, establishing a 
reproducible methodology for contemporary research practices.

B. Research contributions

The primary contributions of this work include:

•	 A comprehensive LLM-augmented ML framework 
combining TF-IDF, LSA, LDA and ensemble methods for 
semantic analysis.

•	 Systematic evaluation demonstrating 83.7% accuracy with 
2.7% cross-domain degradation across three domains.

•	 Quantitative comparison revealing 20-50× inference 
speedup and 8-10× memory reduction versus deep learning.

•	 Transparent integration methodology for LLM research 
assistance tools.

•	 Actionable recommendations for practitioners balancing 
accuracy, efficiency and interpretability.

C. Paper organization

The remainder of this paper is organized as follows: Section 
II reviews related work and establishes theoretical foundations. 
Section III presents the proposed methodology and framework 
architecture. Section IV details experimental setup and datasets. 
Section V presents comprehensive results and analysis. Section 
VI discusses implications and comparisons with alternative 
approaches. Section VII concludes with limitations and future 
directions.

2. Related Work and Theoretical Foundations
A. Semantic analysis paradigms

Semantic analysis encompasses automated systems designed 
to extract, represent and reason about meaning in natural 
language text4. Contemporary approaches employ two primary 
paradigms: the statistical paradigm models meaning through 
distributional hypothesis, while the neural paradigm grounds 
meaning in learned continuous representations.

B. Feature extraction techniques

TF-IDF: Term Frequency-Inverse Document Frequency 
remains widely deployed for text classification with extensive 
empirical validation1,2. TF-IDF quantifies term importance 
by combining term frequency within documents and inverse 
document frequency across corpus:

TF-IDF(t,d) = log(1 + count         (1)

where N represents total documents and df(t) is document 
frequency of term t.

•	 Latent semantic analysis: LSA addresses TF-IDF 
limitations by applying Singular Value Decomposition to 
discover latent semantic structure6:

A ≈ UΣVT 					     (2)

where A is the m × n term-document matrix, truncated to k 
dimensions (k = 50 − 100) to capture essential semantics.

Latent dirichlet allocation: LDA provides probabilistic 
topic modelling, treating documents as mixtures of latent topics5:

         	 (3)

C. Classification algorithms

•	 Support vector machines: SVMs find optimal decision 
boundaries by maximizing margin between classes. For 
multiclass problems, one-versus-rest decomposition trains 
k binary classifiers.

•	 Random forest: Random Forest aggregates predictions 
across hundreds of decision trees trained on random 
data subsamples3. Empirical results demonstrate 84.99% 
accuracy on anxiety detection and 98.6% on large-scale 
datasets7.

•	 Gradient boosting: Gradient Boosting sequentially trains 
weak learners to correct predecessor errors through gradient 
descent in function space, typically achieving superior 
individual accuracy but with increased computational cost.

D. Research gaps
Critical gaps identified include:

Limited comprehensive comparison of ML approaches with 
systematic ensemble voting.
Insufficient investigation of cross-domain generalization 
capabilities.
Lack of transparent LLM integration methodologies in academic 
research.
Inadequate practical guidance for ML vs DL paradigm selection.

3. Proposed Methodology
A. Framework architecture

Figure 1 illustrates the comprehensive ML pipeline 
architecture.

B. Data preprocessing pipeline

The preprocessing stage standardizes text representation 
through:

•	 Lowercasing: Eliminates case-based feature duplication
•	 Punctuation removal: Filters non-semantic characters
•	 Stopword removal: Removes high-frequency function 

words
•	 Tokenization: Decomposes text into atomic units
•	 Length filtering: Removes reviews <10 tokens

C. Multi-modal feature extraction

The framework employs complementary feature extraction 
approaches:

•	 TF-IDF with N-grams: Captures surface-level term 
importance and phrasal semantics through unigrams and 
bigrams (max features: 5000).

•	 LSA dimensionality reduction: Projects sparse TF-IDF 
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Table 1: Dataset Characteristics.
Domain Reviews Avg Length Classes

Electronics 8,000 42 tokens 3

Food & Beverage 6,500 38 tokens 3

Apparel 7,200 35 tokens 3

Total 21,700 39 tokens 3

B. Evaluation metrics

Accuracy: Acc

Weighted F1-Score: Harmonic mean of precision and recall 
weighted by class frequency:

                      		  (5)

Cross-domain transfer: Accuracy degradation when models 
trained on one domain evaluate on unseen domains.

C. Implementation details

Framework implemented in Python 3.8 using:

•	 scikit-learn 1.0: ML algorithms, preprocessing
•	 pandas 1.3: Data manipulation
•	 numpy 1.21: Numerical computation

Hardware: Intel Core i3, 16GB RAM (CPU-only). Training 
time: 2-4 minutes per domain.

5. Results and Analysis
A. Baseline performance

(Table 2) presents baseline CountVectorizer + Random 
Forest results.

Table 2: Baseline Performance (Electronics Domain).

Metric Value

Accuracy 78.3%

Precision 0.782

Recall 0.773

Weighted F1-Score 0.774

Training Time 1.2s

B. Feature extraction impact

(Figure 2) illustrates progressive accuracy improvements 
through feature engineering. Key findings:

TF-IDF unigrams: +1.8% improvement (80.1%)

TF-IDF bigrams: +2.9% improvement (81.2%) • TF-IDF 
n-grams: +3.2% improvement (81.5%)

C. Classifier performance comparison

(Table 3) compares individual classifier performance with 
optimized hyperparameters.

Classifier Accuracy F1-Score Time (s)

SVM (RBF) 82.1% 0.819 1.5

Random Forest 81.9% 0.817 1.8

Gradient Boosting 82.9% 0.827 2.3

Ensemble 83.7% 0.836 3.2

matrices to 50-dimensional semantic space via truncated 
SVD, eliminating noise while preserving essential structure.

•	 LDA topic modelling: Discovers 5-10 latent topics per 
domain, providing interpretable thematic representations 
complementing surface features.

D. Ensemble classification strategy

The ensemble mechanism combines diverse classifiers 
through soft voting:

where 

based on cross-validation performance. Final prediction: yˆ 
= argmaxi P(ci|x).

E. Hyperparameter optimization

GridSearchCV performs exhaustive search over hyperparameter 
spaces with 5-fold cross-validation:

•	 SVM: C ∈ {0.1,1,10}, kernel ∈ {rbf,poly}
•	 RF: nest ∈ {50,100,200}, depth ∈ {10,20, None}
•	 GB: lr ∈ {0.01,0.1}, nest ∈ {50,100,200}

F. LLM integration methodology

Transparent LLM integration enhances research efficiency:

•	 Perplexity AI: Literature review, citation discovery, 
research synthesis.

•	 ChatGPT: Technical debugging, algorithm explanation, 
code assistance.

All LLM-assisted content underwent manual verification, 
ensuring academic rigor while leveraging AI efficiency gains.

4. Experimental Setup
A. Datasets and domains

Three heterogeneous consumer review domains evaluate 
framework performance:

Sentiment labels derived from star ratings: 1-2 stars (negative), 
3 stars (neutral), 4-5 stars (positive). Train-test split: 70%-30% 
(15,190 training, 6,510 testing).

Figure 1: LLM-Augmented ML Framework Architecture for 
Cross-Domain Sentiment Analysis.
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G. Cross-domain generalization

(Figure 4) visualizes cross-domain transfer performance.

Figure 4: Cross-Domain Transfer Performance.

Remarkably modest 2.7% average degradation demonstrates 
strong cross-domain generalization, with models achieving 97% 
of within-domain performance on unseen domains.

H. Computational efficiency analysis

The framework achieves dramatic computational advantages:

•	 Training: 1125-2250× faster
•	 Inference: 21-57× faster
•	 Model size: 8.3-10.2× smaller
•	 Memory: 11-22× reduction

6. Discussion
A. Feature engineering dominance

Feature engineering provided the largest performance gains 
(+3.2%), substantially exceeding hyperparameter optimization 
(+1.4%). This empirically validates prioritizing feature 
extraction quality over algorithm sophistication-a critical insight 
for practitioners (Tables 5,6 and 7).

Table 5: Confusion Matrix - Optimized Ensemble (Electronics 
Domain).

Predicted Class Metrics

True 
Class

Negative Neutral Positive Precision Recall F 1 -
Score

Support

Negative 1847 98 15 0.922 0.942 0.932 1960

Neutral 134 512 89 0.748 0.697 0.722 735

Positive 33 76 2097 0.951 0.954 0.953 2145

Weighted Average 0.908 0.914 0.911 4840

Table 6: Cross-Domain Generalization Results.
Transfer Path Accuracy Degradation

Electronics → Food 81.20% -2.50%

Electronics → Apparel 80.80% -2.90%

Food → Electronics 81.50% -2.20%

Food → Apparel 80.90% -2.80%

Apparel → Electronics 81.30% -2.40%

Apparel → Food 81.10% -2.60%

Average Degradation 81.10% -2.70%

B. Ensemble voting mechanism

Soft voting’s 0.7% improvement reflects complementary error 

Figure 2: Feature Extraction Technique Comparison. 
D. Hyperparameter optimization impact

GridSearchCV optimization yielded marginal but consistent 
improvements (Figure 3):

Figure 3: Hyperparameter Optimization Impact.

Optimal ensemble achieved 83.7% accuracy (+1.4% vs. 
non-optimized, +5.4% vs. baseline).

E. Dimensionality reduction analysis

(Table 4) compares LSA and LDA performance.

LSA achieves 100× dimensionality reduction with only 1.4% 
accuracy trade-off, demonstrating practical value for resource-
constrained deployment.

F. Confusion matrix analysis

Key observations:

•	 Strong positive classification: 95.4% recall for positive 
sentiment.

Table 4: Dimensionality Reduction Comparison.

Approach Dims Accuracy Time (s)

TF-IDF Only 5,000 83.7% 3.2

LSA (50) 50 82.3% 0.9

LDA (5) 5 81.4% 1.2

LSA + TF-IDF 5,050 83.5% 2.1

LDA + TF-IDF 5,005 83.6% 2.8

All Combined 5,055 83.6% 2.8

•	 Neutral class challenge: 69.7% recall—inherent ambiguity 
in mixed sentiment.

•	 Minimal negative-positive confusion: Only 37 
misclassifications (1.2%).
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correction. Analysis revealed:

•	 Classifiers agreed on 95.6% of samples.
•	 SVM-RF disagreement: 3.2% of samples.
•	 SVM-GB disagreement: 2.8% of samples.
•	 Three-way disagreement: 0.4% of samples.

High agreement limits error reduction opportunity but 
compounds substantially at scale (7,000 improvements per 
million predictions).

Table 7: ML vs. Deep Learning Computational Comparison.
Metric ML (Ours) DL (BERT)

Training Time 3.2s 3600-7200s

Inference (per doc) 2.1ms 45-120ms

Model Size 42 MB 350-430 MB

Memory (inference) 180 MB 2-4 GB

Hardware CPU GPU

Speedup 1× 20-50×

C. Cross-domain transfer mechanisms

Three hypotheses explain robust cross-domain generalization:

•	 H1: Universal Sentiment Markers - Positive (“excellent,” 
“amazing”) and negative (“terrible,” “waste”) sentiment 
expressions transcend domains.

•	 H2: Domain-Invariant Semantic Structure - LSA captures 
abstract relationships (quality-price tradeoffs) recurring 
across domains.

•	 H3: Transferable Thematic Content - LDA discovers 
universal topics (quality, value, service) manifesting 
differently across domains.

D. Neutral class ambiguity

The 69.7% neutral class recall reflects fundamental semantic 
ambiguity. Neutral sentiment (3-star ratings) represents mixed 
experiences combining positive and negative elements (“good 
quality but expensive”). Sequential classifiers struggle with this 
inherent tension.

Potential remediation strategies:

•	 Aspect-based analysis: Separate quality and price 
sentiment.

•	 Confidence thresholding: Reject ambiguous cases for 
human review.

•	 Hierarchical classification: Multi-stage pipeline focusing 
on neutral discrimination.

E. ML vs. DL trade-off analysis

F. LLM integration impact

Transparent LLM integration provided significant research 
efficiency gains:

•	 Perplexity AI:
•	 Literature review acceleration: 60%-time reduction.
•	 Citation discovery: 142 relevant papers identified.
•	 Research synthesis: Automated summary generation.

ChatGPT:

•	 Debugging assistance: 75% faster error resolution.
•	 Algorithm explanation: Clarified mathematical 

formulations.
•	 Code optimization: Identified efficiency improvements.

Critical success factor: All LLM-generated content underwent 
manual verification, maintaining academic rigor while leveraging 
AI efficiency.

G. Practical deployment recommendations

Choose ML when:

•	 Labelled data limited (<1K examples).
•	 Interpretability required (regulated domains).
•	 Computational resources constrained (CPU-only).
•	 Cross-domain transfer needed.
•	 Inference latency critical (<5ms).

Choose DL when:

Large labeled datasets (>10K examples).

•	 Accuracy paramount regardless of cost.
•	 Complex linguistic phenomena.
•	 Multi-modal learning needed.
•	 Unlabeled data abundant for pre-training (Table 8).

Table 8: Comprehensive ML vs. Deep Learning Comparison.
Dimension ML (Ours) LSTM BERT Winner

Accuracy (within-domain) 83.70% 85-87% 86-89% DL (+2-5%)

Cross-domain degradation 2.70% 8-12% 10-15% ML (3-5× better)

Training time (1K docs) 3.1s 300-600s 3600-7200s ML (100-2000×)

Inference latency 2.1ms 45-80ms 80-120ms ML (20-57×)

Model size 42 MB 120-180 MB 350-430 MB ML (3-10×)

Labeled data required 500-1K 5K-10K 10K-50K ML (10-50×)

Interpretability High Low Very Low ML

Hardware requirement CPU GPU GPU ML

Recommendation ML: Resource-constrained, interpretability-critical, small data; DL: Large data, accuracy paramount

7. Limitations and Future Work
A. Study limitations

•	 Language scope: English-only evaluation limits 
multilingual generalizability.

•	 Domain homogeneity: Consumer reviews represent 
narrow text genre.

•	 Sentiment granularity: Three-class simplification may 
miss nuanced sentiment.
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•	 DL comparison: No controlled transformer implementation.
•	 Hyperparameter search: Limited ranges due to 

computational constraints.

B. Future research directions

•	 Aspect-based sentiment analysis: Investigate aspect 
extraction and aspect-level sentiment to resolve neutral 
class ambiguity.

•	 Multilingual extension: Evaluate framework performance 
on morphologically complex languages and non-Latin 
scripts.

•	 Cross-domain adaptation: Develop domain adaptation 
techniques leveraging unlabelled target domain data.

•	 Linguistically-motivated features: Integrate dependency 
parsing, semantic role labelling and discourse structure.

•	 Human-AI collaboration: Design interactive interfaces 
enabling human-in-the-loop refinement.

•	 Real-time streaming: Extend framework for continuous 
learning on streaming data.

8. Conclusion
This paper presented a comprehensive LLM-augmented 

machine learning framework for cross-domain sentiment 
analysis, demonstrating that properly engineered classical 
ML approaches achieve competitive accuracy (83.7%) while 
maintaining profound advantages in computational efficiency 
(20-50× faster), interpretability (transparent feature importance) 
and cross-domain generalization (2.7% degradation).

Key contributions include:

•	 Systematic integration of TF-IDF, LSA, LDA and ensemble 
methods achieving 83.7% accuracy.

•	 Empirical validation of 97% cross-domain performance 
retention across three domains.

•	 Quantitative evidence of 20-50× inference speedup and 
8-10× memory reduction versus deep learning.

•	 Transparent LLM integration methodology establishing 
reproducible research practices.

•	 Actionable recommendations balancing accuracy, efficiency 
and interpretability.

The framework demonstrates practical viability for resource-
constrained environments, regulated domains requiring 
explainability and scenarios with limited labelled data-
contexts where deep learning approaches remain infeasible or 
inappropriate.

As AI deployment increasingly enters regulated environments 
demanding transparency, developing countries lacking GPU 
infrastructure and edge applications requiring low latency, 
machine learning approaches deserve renewed attention. This 
research contributes empirical evidence supporting strategic ML 
selection when computational efficiency, interpretability and 
cross-domain transfer outweigh marginal accuracy gains from 
deep learning.
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