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1

 A B S T R A C T 
In this paper, a new method of bearing fault diagnosis based on ensemble empirical mode decomposition (EEMD) and anchor 

point is advanced and verified. EEMD decomposition of vibration signals to rolling bearings on different working conditions, 
the pseudo-fourth-order moment (PFOM) of the decomposed signals calculated. Based on the definition of anchor point, a novel 
fault feature fitting anchor value proposed. Newton interpolation is adopted to fit the PFOM, and the anchor point is brought into 
the fitting function to get the anchor point fitting value. A large amount of data was obtained through many experiments, and the 
range of anchor fitting values under normal and five kinds of faults were determined. The anchor fitting value as the feature used to 
classify six working conditions. Taking the fitting value of the anchor point as the fault feature, the training data is selected and put 
into the extreme learning machine (ELM), and different working conditions are classified. Then take the test data and put it into the 
ELM model based on the training data for diagnosis, and the final classification accuracy reaches 97.5%. Finally, three comparative 
experiments shows that the present method are effective against the field of bearing fault diagnosis.
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Introduction 
In most large-scale mechanical equipment, rolling bearing is 

a part of it, which plays a key role. Whether the rolling bearing 
can function safely and trouble-free, to a great extent, relates to 
the operation of the whole equipment, so it is an essential step to 
make an accurate diagnosis of the rolling bearing [1]. With the 
continuous development of industrial equipment, the structure of 
mechanical equipment in all walks of life has become more and 
more complex, and the relationship between various parts has 
become closer and closer [2]. Therefore, if the rolling bearing is 
damaged, it will lead to problems in the operation of the whole 
industrial equipment, thus affecting the normal operation of the 
whole industrial equipment, possibly endangering people’s lives 
and leading to irreparable consequences [3]. In early years, the 
fault diagnosis of the rolling bearing depends on manpower, 
so the early faults in the bearing cannot be found in time. 
Fortunately, the fault diagnosis of rolling bearings keeps pace 
with the times and develops with the progress of science and 
technology.

The vibration signal is the easiest to obtain, which can 
reflect the data of bearing state [4]. But the vibration signal 
of the rolling bearing is often influenced by the coupling of 
various vibration propagation paths, and the background noise 
and interference signal of the vibration signal is strong, which 
makes it hard for the traditional methods to produce results 
[5]. In the current field, many nonlinear and non-stationary 
signal processing methods are used [6]. Such as, Resonance-
based Sparse Signal Decomposition (RSSD) [7], Wavelet 
Transform (WT) [8], empirical mode decomposition (EMD) 
[9]. Variational Modal Decomposition (VMD) [10], filters the 
original signal, decomposes the dominant frequency signals 
to the set of AM/FM signals, and assumes that the limited 
bandwidth of each mode has a center frequency so that the 
sum of estimated bandwidths of each mode is minimized, thus 
realizing the adaptive decomposition of the signal. CEEMD [11] 
is an improvement of empirical mode decomposition (EMD) 
and integrated empirical mode decomposition (EEMD), which 
can completely decompose signals. CEEMD adds a group of 
white noises with opposite positive and negative to the original 
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signal, which can not only suppress the mode alias of EMD but 
also keep the residual noise at a low level all the time and then 
ignored. However, CEEMD has a large amount of calculations, 
and when processing a large amount of data, the program runs 
too long, which affects the efficiency.

Although vibration diagnosis technology can diagnose some 
typical faults of rolling bearings, with the increasingly complex 
structure of rolling bearings, the positions and forms of faults 
are gradually diversified, making it difficult to diagnose them 
accurately [12]. With the development of artificial intelligence 
technology, many machines learning methods has been applied 
to fault diagnosis of rolling bearings. Such as deep learning [13], 
Enfigram [14], non-parallel least squares support matrix machine 
(NPLSSMM) [15]. Hu et al. apply deep learning [16] to fault 
diagnosis of rolling bearing, and explored the feasibility of stack 
noise reduction white cod at fault diagnosis of rolling bearing. 
This method analyzed and discussed the influence of different 
hidden layer combinations on identification rate and studied 
the feasibility of realizing intelligent identification of bearing 
faults by stack noise reduction self-coding method. Zheng et 
al.[17] found an improved multi-scale permutation entropy 
(MPE) method, called generalized compound multi-scale 
permutation entropy (GCMPE), which solved the shortcomings 
of rough grain in MPE and improved the accuracy. Pang et 
al. propose an ensemble learning diagnosis method [18]. This 
method combines fast denoising with ELM, which improves 
the training speed of ELM, and has better learning ability when 
learning highly abstract features. It solves the problem that the 
domain drift caused by working condition fluctuation or noise 
will significantly reduce the diagnostic performance of existing 
deep learning methods. Hou et al.[19] find a novel method 
based on sparse representation theory with high accuracy. It is 
inspired by the traditional K-SVD based de-noising method and 
can penetrate into the underlying structure of the signal. The 
coefficients are globally optimized based on an (l1)-regularized 
least square problem solving method, which can locate the 
impulse coordinates more accurately compared with orthonormal 
matching pursuit (OMP) applied in the traditional K-SVD.

As a commonly used mechanical rotating component, rolling 
bearings are mainly composed of four parts: inner ring, outer 
ring, ball and cage [20]. From the simulation and the actual 
diagram of Figure 1, we can see the four components of a 
rolling bearing. The outer ring is installed in the bearing seat 
hole and generally does not rotate. The inner ring is mounted 
on the journal and rotates with the shaft. Rolling element is the 
core element of rolling bearing and plays a rolling role. The cage 
rollers are evenly spaced to avoid friction with each other.

The structure of the rest of this paper is as follows: The 
second section introduces the feature reconstruction of bearing 
failure. The third section introduces the diagnosis scheme and 
the specific experimental flow. The fourth section starts the 
simulation experiment and gives the corresponding data. In the 
fifth section, a comparative experiment was carried out. Finally, 
the conclusion is given.

Feature reconstruction of bearing fault
Data standardization

Through the standardized processing of data, the original data 
can be converted into index evaluation values without dimensions, 
and each index value is in the same order of magnitude, so it 
can be comprehensively evaluated and analyzed. If the original 
data are directly used for analysis without processing, the higher 

values will have a greater impact on the analysis, while the 
lower values will have a smaller impact, resulting in erroneous 
analysis [22]. After processing, it can be better analyzed and 
judged more effectively. The extracted rolling bearing vibration 
data is standardized by eq1:

where,  is the standardized processed data, x is the original 
data,   is the maximum value in the original data,   is the minimum 
value in the original data.

By readjusting the value of each dimension of data, the final 
data vector falls within the [0,1] interval. This normalization 
method is more suitable for the situation where the rolling 
bearing data are relatively concentrated. The maximum and 
minimum values of little change, simple and stable.

Figure 1: Rolling bearing structure

EEMD

Ensemble empirical mode decomposition (EEMD) is a 
classical noise-assisted signal analysis method [23]. By adding 
Gaussian white noise with a given amplitude to the original 
signal, EMD and averaging are carried out many times to solve 
the problem of modal aliasing. In this method, the statistical 
characteristics of uniform Gaussian white noise frequency 
distribution is used to change the distribution characteristics 
of extreme points of the original signal so that the signal has 
continuity in different characteristic scales and the error of 
envelope fitting of upper and lower extreme points is avoided 
[24].

The realization can be summarized as follows:

(1) adding Gaussian white noise sequence with amplitude 
coeffcient k m times to original signal x (t)to obtain xi (t) (I = 
1,2,…., M).

(2) The signals xi (t) obtained in step (1) are decomposed by 
EMD to obtain N IMF components cij (t) (J = 1,2…., N) and a 
residual component si (t).

where, cij (t) is the j IMF component of the ith decomposition, 
si (t) is the residual component of the ith decomposition.

(3) Average the decomposed IMF component cij (t) and residual 
component si (t), eliminate the influence of noise on IMF 
component, and get
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Therefore, the original signal x(t) is decomposed into N IMF 
components cj (t) (J = 1,2…., N) and a residual component s(t).

Pseudo fourth-order Moment (PFOM)

Traditional fourth-order moment calculation is tedious, 
which takes up a lot of resources and computing power and 
consumes a lot of time when calculating on the computer, which 
seriously affects the efficiency. Moreover, the requirements of 
multi-computers are higher, and ordinary computers may not 
be competent. For this reason, PFOM is designed to weaken 
the orthogonality condition, and the orthogonality of the signal 
obtained by EEMD decomposition is losers, so PFOM can be 
obtained by a simple calculation. The method is as follows:

where, K is PFOM, an is the data,   .

Newton interpolation method

When we only know the position of the function at some 
nodes but don’t know the specific expression of the function, 
we can use the algebraic interpolation method to give the 
approximate form of the function. In this paper, the Newton 
interpolation method is used to get the approximate function of 
fitting. The specific method is as follows:

Let the function f (x) be known that its n+1 interpolation 
nodes are (xi, yi), i = 0,1,2,….., n, we define:

The zero-order difference quotient of f (x) in  is f (xi);

The first-order quotient of f (x) at points  and  is f (xi, xj) = 

.

The second-order quotient of f (x) at points xi, xj and xk is f (xi, 

xj, xk) = .

Generally, the k-order quotient of f (x) at point x0, x1,…., xk is:

After the difference quotient is obtained, Newton interpolation 
method can be used for fitting. Calculate the difference quotient 
of f (x) and bring it into the formula.

Anchor point

After the standardized rolling bearing vibration signal data 
is decomposed by EEMD, five layers of signals are obtained. 
Calculate the PFOM of the obtained signal. A fitting function 
can be obtained by fitting the obtained PFOM with Newton 
interpolation method. The fitting function of different working 
conditions is different. In order to extract features conveniently, 
the point with the greatest discrimination of the function image 

is set as the anchor point.

Different anchor points corresponding to different results 
affect the extracted fault characteristics. Therefore, it is necessary 
to find the best anchor point.

In order to find the anchor point, which is the most 
distinguished point of fitting function of six working conditions, 
a formula is derived: 

where,  is the degree of discrimination, with a maximum of 
1 and a minimum of 0,  is the anchor point,  is variable and σ is 
bandwidth, σ = 0.5.

After a lot of calculations, when the anchor point is between 
1.0 and 1.4, the accuracy of fault diagnosis is higher, and the 
fault features have better discrimination.

Extreme learning machine

In this paper, extreme learning machine is used as classifier. 
Compared with support vector machine (SVM), which is widely 
used in the field of fault diagnosis, extreme learning machine 
(ELM) has better multi-classification effect and faster speed. 
Through the classifier of extreme learning machine [25] a 
fault diagnosis scheme for rolling bearings is designed. ELM 
algorithm is as follows: 

• The weight wi and the hidden layer deviation bi are initialized 
and kept constant.

• The matrix H of the hidden layer output is calculated.

• Calculation β.

• Put the data into the extreme learning machine.

Range division

Ten thousand data extracted from six working conditions 
respectively, and the data were standardized and then 
decomposed by EEMD. Take the first five layers of decomposed 
data and calculate the pseudo-fourth moment. Newton 
interpolation method is used to fit the pseudo-fourth moment, 
and the fitting function is obtained. Bring the anchor point into 
the fitting function and get the fitting value of the anchor point. 
Repeat the above steps many times to determine the anchorage 
fitting value range of six working conditions. The fitting 
numerical range of anchor point in normal working conditions 
is 0.08644~0.13987. The fitting numerical range of fault 1 
anchor point is 1.93677~3.01581. The fitting numerical range of 
anchor point of rolling body fault in normal working condition 
is 1.22515~2.41464. The fitting numerical range of anchor 
point of outer ring fault 1 under normal working condition is 
2.50308~13.14295. The fitting numerical range of fault 2 anchor 
point is 4.39316~29.52875. The fitting numerical range of anchor 
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point of outer ring fault 2 under normal working condition is 
1.03532~1.74344. After the range of anchor fitting value is 
determined, it can be used to distinguish six working conditions. 
This result is correct when the fitting values of anchor points in 
six working conditions are within the corresponding range. If the 
anchor fitting value is not in the corresponding range, the result 
will be wrong.

Diagnostic scheme
In the traditional method, the pseudo-fourth moment is 

directly taken as the characteristics of rolling bearings under 
different working conditions. But this method actually ignores a 
lot of information contained in the pseudo-fourth-order moment. 
In order to obtain more fault information and better realize fault 
diagnosis of rolling bearings, this paper combines pseudo-
fourth-moment with interpolation fitting. In order to obtain the 
best diagnosis result, the concept of anchor point is put forward. 
By introducing the anchor point into the fitting curve, the fitting 
value of the anchor point is taken as the fault feature of the 
rolling bearing. This promotion greatly expands the application 
of pseudo-fourth-moment in fault diagnosis.

The fault diagnosis program of rolling bearing based on 
anchor fitting value is developed as follows:

1. In the data set of each working condition of rolling bearing, 
the same number of continuous data are randomly selected 
as experimental data.

2. The experimental data of different working conditions are 
processed by EEMD, and N-layer IMFs is obtained.

3. Calculate the PFOM of each IMF layer, that is, kn, n=1,2,…, 
m.. kn is the PFOM of the n-th IMF layer.

4. Coordinate points (n, k_n) are composed of layers n and k 
_ n. The coordinate points (1, k1), (2, k2), …, (m, km ) are 
fitted by Newton interpolation method, and fitting functions 
are obtained.

5. According to the derived formula, the best anchor point is 
introduced. And the anchor point is brought into the fitting 
function to calculate the fitting value of the anchor point.

6. After many experiments, the fitting range of anchor point 
under six working conditions of rolling bearing is divided.

7. Through the extreme learning machine, the final classifier 
test is carried out and the correct rate is calculated.

As shown in Figure 2.

Simulation Experiment 
The CWRU vibration data set is used in this paper. The 

following Figure 3 shows the experimental device for collecting 
CWRU vibration data set. The data used in this paper are as 
follows. The normal working condition is the data at the speed 
of 1750 rpm. Fault 1 of inner ring, fault of rolling element and 
fault 1 of outer ring are the data when the rotating speed is 1750 
rpm, and the fault diameter is 0.1778 mm. Fault 2 of the inner 
ring and fault 2 of the outer ring are the data when the rotating 
speed is 1797 rpm, and the fault diameter is 0.3556 mm.

The specific steps of simulation are shown in Figure 4.

The simulation is divided into three steps. The first step is 
to preprocess the basic data of rolling bearings, display the time 
domain images of vibration signals of each rolling bearing under 
six working conditions, and normalize the data. The second step 

is feature extraction, including EEMD decom- position, pseudo-
fourth-order moment calculation, anchor fitting value extraction, 
and anchor fitting value range establishment. The third step is to 
use ELM classifier for testing.

Figure 2: Design scheme of experiment.

Figure 3: CWRU bearing experimental device.

Figure 4: Design scheme of experiment.

Time-domain images of vibration signals of rolling bearings 
in six working conditions are shown in Figure 5.
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From the time-domain signal images of rolling bearings, 
it can be seen that the vibration signals produced by bearings 
under different working conditions are different, but there are 
differences, but they are not obvious. Only by the vibration signal 
neither the human eye nor the computer can make an accurate 
judgment, which has a great error. Therefore, it is necessary 
to dig deeper into the vibration signal data to find out the 
characteristics of each working condition. There are many ways 
to deal with vibration information, but EEMD is undoubtedly a 
good choice. EEMD solves the problems of modal aliasing in 
EMD, and at the same time, it has both accuracy and rapidity.

The EEMD can decompose the signal into multiple layers, 
show the characteristics of the original data at different 
times, and mine the data well. Considering the requirements 
of computation and running time, only the first five layers of 
inherent modal components (IMF) are selected in this paper. 
The time-domain signal is decomposed by EEMD, as shown in 
Figure 6 to Figure 11.

Figure 5: Vibration signals in time domain.

Figure 6: Normal signal EEMD.

Figure 7: Inner ring fault 1 EEMD.

Figure 8: Ball fault EEMD.

Figure 9: Outer ring fault 1 EEMD.

After EEMD decomposition, the original data has changed 
a lot, and the available information has increased. At this time, 
if the obtained data is input into the extreme learning machine, 
a good result cannot be obtained. But it is still not enough for 
the computer to easily classify the six working conditions of 
rolling bearings. If the fault diagnosis of rolling bearing can’t be 
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completed, it still needs deeper extraction. Therefore, the PFOM 
is introduced in this paper. Based on the obtained five-layer IMF, 
the PFOM is calculated. The experimental data selected in this 
paper are continuous data with a length of 6000 in the rolling 
bearing data set of Western Reserve University. The selection of 
these data is random. The experimental data is decomposed by 
EEMD to obtain 5-layer IMF. Calculate the PFOM of the IMF 
in the first to fifth layers under each working condition. Table 
1 to Table 6 summarizes the results of PFOM calculated six 
times with different experimental data under various working 
conditions.

Figure 10: Inner ring fault 2 EEMD.

Figure 11: Outer ring fault 2 EEMD.

First layer 
signal

Second 
layer signal

Third layer 
signal

Fourth 
layer signal

Fifth layer 
signal

1 0.104890 0.234231 0.003717 0.017001 0.051791

2 0.061546 0.175258 0.009652 0.014929 0.168248

3 0.062340 0.165549 0.007364 0.021841 0.055907

4 0.148990 0.168241 0.006728 0.014879 0.065593

5 0.080645 0.206833 0.015108 0.146216 0.041683

6 0.092859 0.213619 0.008211 0.016863 0.033380

Table 1: PFOM in normal condition

judgments. It is still necessary to continue to extract features to 
get the diagnostic accuracy. In this paper, a brand-new method 
is created to further extract the fault characteristics of rolling 
bearings, that is, anchor point method. After the standardized 
rolling bearing vibration signal data is decomposed by EEMD, 
five layers of signals are obtained. Calculate the PFOM of the 
obtained signal. A fitting function can be obtained by fitting the 
obtained PFOM with Newton interpolation method. Coordinate 
points (n,) are composed of layers n and . The coordinate points 
(1, ), (2, ), …, (5, ) are fitted by Newton interpolation method, 
and fitting functions are obtained. According to the derived 
formula, the best anchor point is introduced. The fitting function 
of different working conditions is different. In order to extract 
features conveniently, the point with the greatest discrimination 
of the function image is set as the anchor point. Different anchor 
points corresponding to different results affect the extracted fault 
characteristics. For this reason, each group of data obtained is 
fitted by Newton interpolation method, and a fitting function 
can be obtained. The fitting function is different under different 
working conditions. In order to extract features conveniently, 
I will define the point with the largest division in the function 
image as the anchor point. See eq9 for the selection of anchor 
points. And the anchor point is brought into the fitting function 
to calculate the fitting value of the anchor point. By bringing 
the anchor point into the fitting function, the fitting value of 
the anchor point can be obtained.  Based on the fitting value of 
anchor point, the fault diagnosis of rolling bearing can be carried 
out. When the anchor point is between 1.0 and 1.4, the greater 
the discrimination of the fitting value of the anchor point as a 
feature, and the higher the accuracy of distinguishing various 
working conditions of the bearing.

First layer 
signal

Second 
layer signal

Third layer 
signal

Fourth 
layer signal

Fifth layer 
signal

1 2.968791 0.105541 0.007305 0.000075 0.000007

2 3.112328 0.098536 0.003823 0.000261 0.000017

3 3.163065 0.125855 0.007231 0.000072 0.000015

4 3.548760 0.088502 0.008892 0.000181 0.000008

5 3.403726 0.139743 0.011422 0.000097 0.000014

6 3.274510 0.110665 0.009346 0.000269 0.000003

First layer 
signal

Second 
layer signal

Third layer 
signal

Fourth 
layer signal

Fifth layer 
signal

1 2.275080 0.001754 0.001254 0.000119 0.000021

2 2.066753 0.003036 0.001088 0.000400 0.000019

3 2.225558 0.004007 0.001393 0.000078 0.000026

4 2.222781 0.002185 0.000981 0.000085 0.000037

5 2.269499 0.003786 0.001056 0.000166 0.000045

6 2.149660 0.002737 0.001655 0.000122 0.000034

First layer 
signal

Second 
layer signal

Third layer 
signal

Fourth 
layer signal

Fifth layer 
signal

1 9.101338 0.003941 0.000289 0.000058 0.000006

2 9.262672 0.004673 0.000176 0.000056 0.000003

3 5.073220 0.006222 0.000197 0.000069 0.000009

4 9.745454 0.007644 0.000171 0.000039 0.000003

5 6.283764 0.014097 0.000413 0.000080 0.000014

6 8.213266 0.003960 0.000218 0.000100 0.000017

Table 2: PFOM in inner ring fault 1.

Table 3: PFOM in ball fault.

Table 4: PFOM in outer ring fault 1.

From the tables, we can see that PFOM under various working 
conditions is unstable and there is a certain intersection. That is, 
parts that contain or intersect with each other. If this feature is used 
for fault diagnosis, it will produce great errors and make wrong 
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First layer 
signal

Second 
layer signal

Third layer 
signal

Fourth 
layer signal

Fifth layer 
signal

1 17.342949 0.019238 0.001560 0.000637 0.000010

2 12.370938 0.046163 0.001501 0.000409 0.000041

3 16.853678 0.018278 0.001784 0.001481 0.000027

4 14.748240 0.017147 0.001398 0.000410 0.000070

5 21.918791 0.025963 0.002539 0.000511 0.000018

6 15.646733 0.010551 0.002640 0.000660 0.000056

First layer 
signal

Second 
layer signal

Third layer 
signal

Fourth 
layer signal

Fifth layer 
signal

1 2.052742 0.016217 0.012410 0.000744 0.000523

2 1.715995 0.012343 0.024751 0.001291 0.000617

3 2.046519 0.010661 0.014544 0.002208 0.000263

4 1.803944 0.010880 0.009416 0.001226 0.000309

5 1.682126 0.014349 0.010175 0.001302 0.000346

6 1.828368 0.011147 0.010376 0.000625 0.000508

Table 5: PFOM in inner ring fault 2.

Table 6: PFOM in outer ring fault 2.

Figure 12: Different anchor values.

Figure 12 shows the correct rate of six working conditions 
when the anchor point is 1.12.

normal 
working
condition

inner 
ring

fault 1

ball
fault

outer 
ring

fault 1

inner ring
fault 2

outer 
ring

fault 2
1 0.181393 2.618817 1.712822 4.629568 13.094801 1.489802

2 0.127293 2.753595 1.593002 8.027482 17.449723 1.279488

3 0.120234 2.333917 1.752850 3.910408 11.556697 1.216012

4 0.162344 2.329024 1.826760 5.854089 15.144390 1.391501

5 0.133126 2.437697 1.933177 6.328197 13.366781 1.314201

6 0.116876 2.677208 2.310330 4.846123 12.989539 1.460101

7 0.179062 2.631017 1.604479 5.003566 15.276742 1.484300

8 0.160229 2.372211 1.616120 7.136850 9.548197 1.584440

9 0.183816 2.384859 1.595506 4.743769 12.056239 1.196855

10 0.116105 2.449524 1.673202 7.012235 19.717810 1.410062

11 0.124492 2.105284 1.656535 5.226698 11.367244 1.268277

12 0.159628 2.141258 1.593521 6.058408 10.567740 1.298909

13 0.126925 2.572458 1.649264 5.318240 12.597680 1.245198

14 0.121454 2.768154 1.571686 9.025844 14.550618 1.360676

15 0.119055 2.487228 1.625889 7.509978 11.435785 1.170739

Table 8: Anchor fitting value of training data.

When the anchor point is 1.12, the anchor fitting values of 
six working conditions are shown in Table 7. In order to observe 
the discrimination of fault characteristics, the calculation results 
also selected different experimental data and repeated six 
experiments.

The fitting numerical range of anchor point of rolling body fault 
in normal working condition is 1.22515~2.41464. The fitting 
numerical range of anchor point of outer ring fault 1 under 
normal working condition is 2.50308~13.14295. The fitting 
numerical range of fault 2 anchor point is 4.39316~29.52875. 
The fitting numerical range of anchor point of outer ring fault 2 
under normal working condition is 1.03532~1.74344. After the 
range of anchor fitting value is determined, it can be used to 
distinguish six working conditions. This result is correct when 
the fitting values of anchor points in six working conditions are 
within the corresponding range. If the anchor fitting value is not 
in the corresponding range, the result will be wrong.

The diagnostic accuracy is obtained by classifying six 
working conditions by the extreme learning machine classifier. 
The fitting values of anchor points are used as features, which are 
divided into two groups of data: training and testing and input 
into the ELM classification model for training and testing. The 
first category represents normal conditions, the second category 
represents inner ring fault 1, the third category represents ball 
fault outer ring fault, the fourth category represents outer ring 
fault, the fifth category represents inner ring fault 2, and the sixth 
category represents outer ring fault 2. The anchor fitting value 
is used as the feature of training and testing data. There are 15 
groups of training data in each working condition, 90 groups 
in 6 working conditions, and then 6 groups of testing data in 
each working condition, 36 groups in 6 working conditions. The 
fitting values of training data anchor points are shown in Table 
8, and the fitting values of test data anchor points are shown in 
Table 9.

1 2 3 4 5 6
Normal 0.17906 0.11611 0.11688 0.18382 0.16234 0.16023

Inner1 2.32902 2.43770 2.48723 2.76815 2.67721 2.56609

Ball 1.75285 1.59300 1.71560 1.71282 1.74947 1.65654

Outer1 7.01223 7.13685 3.91041 7.50998 4.84612 6.32820

Inner2 13.36678 9.54820 12.98954 11.36724 16.89402 12.05624

Outer2 1.21601 1.31985 1.16045 1.39150 1.29891 1.15541

Table 7: Anchor fitting values.

The results show that there is almost no intersection between 
the fitting values of anchor points corresponding to the six working 
conditions, which can be used as features for fault diagnosis. 
After many experiments, the range of anchor fitting values 
can be obtained. The fitting numerical range of anchor point 
in normal working conditions is 0.08644~0.13987. The fitting 
numerical range of fault 1 anchor point is 1.93677~3.01581. 

The ordinate of Figure 13 and Figure 14 shows the working 
state types of rolling bearings, 1 represents normal working 
state, 2 represents inner ring failure 1, 3 represents ball failure, 
4 represents outer ring failure, 5 represents inner ring failure 2, 
and 6 represents outer ring failure 2. The red circle indicates 
the predicted value obtained after ELM calculation, and the 
blue circle indicates the real value corresponding to the working 
condition classification. As shown in Figure 13 and Figure 14, 
the extreme learning machine classifier classifies the normal 
working conditions and five fault working conditions, and the 
fault diagnosis accuracy rate characterized by the anchor fitting 
value reaches 97.2%, shows that six working conditions of 
rolling bearings can be diagnosed with high accuracy.
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normal 
working
condition

inner 
ring

fault 1

ball
fault

outer 
ring

fault 1

inner ring
fault 2

outer 
ring

fault 2
1 0.127456 2.437928 1.705957 4.335145 11.366106 1.319846

2 0.133194 2.388908 1.749469 5.083932 10.622493 1.302657

3 0.086439 2.476930 1.694581 5.746420 16.894021 1.576876

4 0.146722 2.476000 1.647039 5.660225 12.348784 1.449702

5 0.107368 2.073945 1.715604 6.151780 15.444343 1.443867

6 0.188838 2.566092 1.555072 4.154749 13.624653 1.340219

Table 9: Anchor fitting value of test data.

Figure 13: Training set prediction results comparison.

Figure 14: Test set prediction results comparison.

normal 
working
condition

inner 
ring

fault 1

ball
fault

outer 
ring

fault 1

inner 
ring

fault 2

outer 
ring

fault 2
1 0.007543 -0.001360 0.002008 0.002980 0.003490 0.004103

2 0.010479 0.000021 -0.001080 -0.003122 0.003409 0.001099

3 0.002963 0.001462 -0.001350 0.003798 -0.001181 0.007930

4 0.005594 0.002306 0.003530 -0.001087 0.002352 0.008704

5 0.017195 0.000316 0.002450 -0.002431 0.003575 0.012723

6 0.002016 0.003223 0.002789 -0.004244 -0.000058 0.001178

7 0.001813 0.001493 0.001239 -0.006478 0.002546 -0.000078

8 0.003528 -0.007616 0.006131 0.004363 0.003654 0.007224

9 0.009527 0.003084 -0.000907 -0.004744 -0.000946 0.003825

10 0.001865 -0.004106 -0.002806 0.004150 0.001946 -0.010844

11 0.000620 0.001388 -0.004992 0.000537 -0.005889 0.002843

12 0.003786 0.005720 0.001116 0.002670 0.004863 -0.008482

13 0.006115 0.002950 0.002457 0.003284 0.000881 -0.008684

14 0.009396 0.002598 -0.003275 -0.003303 0.005532 0.003612

15 0.009726 0.005209 -0.000336 -0.000795 0.001777 0.002643

normal 
working
condition

inner 
ring

fault 1

ball
fault

outer 
ring

fault 1

inner 
ring

fault 2

outer 
ring

fault 2
1 0.274508 0.633283 0.724123 0.758212 0.741464 0.666049

2 0.218524 0.650297 0.729518 0.751612 0.713334 0.650795

3 0.233791 0.654194 0.716410 0.754879 0.743892 0.653807

4 0.256025 0.645989 0.738111 0.758338 0.680909 0.661458

5 0.255557 0.643043 0.723870 0.753258 0.751570 0.686035

6 0.276423 0.633080 0.726484 0.755179 0.720359 0.707747

7 0.243140 0.646026 0.724277 0.757112 0.708792 0.663230

8 0.228540 0.635356 0.728024 0.761926 0.739021 0.657754

9 0.253539 0.643018 0.729871 0.758508 0.707766 0.677805

10 0.229966 0.645415 0.722012 0.754723 0.725420 0.687437

11 0.262691 0.655338 0.733514 0.756410 0.684090 0.676742

12 0.202618 0.640378 0.731545 0.749055 0.732881 0.675362

13 0.231968 0.625888 0.719490 0.764066 0.732643 0.686062

14 0.255965 0.663411 0.729928 0.760096 0.686804 0.650805

15 0.207113 0.642403 0.734648 0.742157 0.727847 0.680840

Table 10: Anchor fitting value of Pseudo-first moment.

Table 11: Anchor fitting value of Pseudo-second moment.

Comparative Experiments 
Comparative Experiments 1: with different moment orders’

Compared with the present method under different moment 
orders. The accuracy of the first- order method combined 
with EEMD decomposition is 23.1%. The accuracy of the 
second-order method combined with EEMD decomposition is 
73.9%. The accuracy of the third-order method combined with 
EEMD decomposition is 34.4%. The accuracy of the present 
method is 97.5%. The four methods were repeated ten times, 
respectively. Table 10 to Table 12 show the anchor fitting values 
of comparative experiments with different moments. Table 13 
shows the accuracy rate and average results of the comparative 
experiment with different moment orders.

normal 
working
condition

inner 
ring

fault 1

ball
fault

outer 
ring

fault 1

inner 
ring

fault 2

outer 
ring

fault 2
1 0.002101 0.013924 0.015753 0.005557 0.081769 0.001763

2 0.002194 -0.006306 -0.003695 -0.039241 0.034552 0.028026

3 -0.000493 -0.001825 0.004415 0.065029 0.059250 -0.009743

4 -0.000813 0.010431 0.003497 -0.073414 0.039217 -0.006175

5 0.005126 0.005859 0.001341 -0.016959 0.077821 0.006805

6 -0.001002 0.014557 -0.008915 -0.008516 -0.032816 -0.001190

7 -0.000318 0.016641 -0.000386 -0.013561 0.061884 -0.011250

8 -0.001226 -0.009072 0.003154 0.059697 0.019967 0.005780

9 0.000665 0.030147 -0.002965 0.018134 -0.018703 -0.009082

10 0.000102 0.008358 0.001005 0.024589 -0.050546 -0.003335

11 -0.007411 0.005427 -0.000966 0.007183 -0.019743 0.007837

12 -0.002883 0.005086 0.007147 0.028310 -0.037787 0.012822

13 -0.002000 0.027242 -0.014193 0.014589 0.002512 -0.016529

14 0.001100 0.003196 -0.003758 -0.011354 0.103346 -0.010513

15 0.002598 0.005234 0.013833 -0.009947 0.045571 0.001002

Table 12: Anchor fitting value of Pseudo-third moment.
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Pseudo-first 
moment
EEMD

Pseudo-second 
moment
EEMD

Pseudo-third 
moment
EEMD

Present 
method

1 25.0% 75.0% 36.1% 100.0%

2 22.2% 72.2% 36.1% 97.2%

3 19.4% 69.4% 38.9% 94.4%

4 27.8% 75.0% 30.6% 100.0%

5 19.4% 77.8% 30.6% 94.4%

6 16.7% 69.4% 30.6% 97.2%

7 27.8% 75.0% 47.2% 100.0%

8 25.0% 72.2% 33.3% 97.2%

9 16.7% 75.0% 30.6% 100.0%

10 30.6% 77.8% 30.6% 94.4%

Mean 
value

23.1% 73.9% 34.4% 97.5%

Table 13: Comparative results with different moment order.

From Table 10 to Table 12, it can be seen that the pseudo first 
moment, pseudo second moment and pseudo third moment are 
quite unstable. Among them, the pseudo first-order moment and 
pseudo third-order moment still have the problem of positive and 
negative transformation, which greatly increases the instability 
of interpolation fitting. The results show that the accuracy of 
this method improves by 77.4% compared with the first-order 
method, 23.6% compared with the second-order method, and 
63.1% compared with the third-order method.

Comparative Experiments 2: with different decomposition 
methods

Through the standardized processing of data, the original 
data can be converted into Compared with the present method 
under different decomposition conditions. The accuracy 
of EMD decomposition method is 78.0%. The accuracy of 
VMD decomposition method is 91.7%.  The accuracy of this 
method is 97.5%. The three methods were repeated ten times, 
respectively. Table 14 and Table 15 show the anchor fitting 
values of comparative experiments of different decomposition 
methods. Table 16 shows the accuracy rate and average results 
of the experiment.

As can be seen from Table 14 and Table 15, neither EMD nor 
VMD can achieve good results. There is a serious cross between 
the data, which can not be used as a feature to identify different 
working conditions. Moreover, EMD still has the problem of 
modal aliasing, which greatly reduces the accuracy of final 
identification. The results show that the present method improves 
the decomposition accuracy by 19.5% compared with EMD 
decomposition and 5.8% compared with VMD decomposition.

Comparative Experiments 3: with original pseudo fourth-
order moment [8]

In order to further prove the effectiveness of the present 
method, comparative experiments with the original pseudo-
fourth-order moment method is carried out, which is published 
in reference [8]. The specific improvement for original PFOM 
includes that two fault diagnosis conditions are added, and the 
accuracy rate is improved. The accuracy of the original pseudo 
fourth-order moment method is 95.4%. The accuracy of the 
present method is 97.5%, which is 2.1% higher than the original 
pseudo fourth-order moment method. The two methods were 

normal 
working
condition

inner 
ring

fault 1

ball
fault

outer 
ring

fault 1

inner 
ring

fault 2

outer 
ring

fault 2
1 0.00646 0.05676 0.23212 0.47127 -0.32622 0.27607

2 -0.00188 0.08461 0.27881 0.58396 0.07616 0.27077

3 -0.00108 0.08414 0.17973 0.46986 -0.30306 0.22566

4 0.00327 0.06534 0.25797 0.47516 -0.06078 0.21426

5 0.00110 0.04853 0.20524 0.55024 -0.27453 0.25071

6 -0.00039 0.12705 0.24049 0.54036 -0.43171 0.22276

7 0.00677 0.08950 0.29530 0.58164 -0.18189 0.17577

8 0.00647 0.11822 0.24661 0.49345 -0.51515 0.18451

9 0.00675 0.03911 0.24257 0.44054 -0.04672 0.13823

10 0.00588 0.10688 0.28570 0.55702 -0.29173 0.21825

11 -0.00116 0.01209 0.24644 0.53362 -0.12283 0.19742

12 0.00214 0.06370 0.23617 0.57911 -0.38788 0.23394

13 0.00981 0.05540 0.19223 0.46450 -0.22017 0.21928

14 0.01743 0.03287 0.30427 0.45405 -0.21252 0.20886

15 0.02009 0.06659 0.18442 0.46718 -0.40922 0.20747

normal 
working
condition

inner 
ring

fault 1

ball
fault

outer 
ring

fault 1

inner 
ring

fault 2

outer 
ring

fault 2
1 0.00646 0.05676 0.23212 0.47127 -0.32622 0.27607

2 -0.00188 0.08461 0.27881 0.58396 0.07616 0.27077

3 -0.00108 0.08414 0.17973 0.46986 -0.30306 0.22566

4 0.00327 0.06534 0.25797 0.47516 -0.06078 0.21426

5 0.00110 0.04853 0.20524 0.55024 -0.27453 0.25071

6 -0.00039 0.12705 0.24049 0.54036 -0.43171 0.22276

7 0.00677 0.08950 0.29530 0.58164 -0.18189 0.17577

8 0.00647 0.11822 0.24661 0.49345 -0.51515 0.18451

9 0.00675 0.03911 0.24257 0.44054 -0.04672 0.13823

10 0.00588 0.10688 0.28570 0.55702 -0.29173 0.21825

11 -0.00116 0.01209 0.24644 0.53362 -0.12283 0.19742

12 0.00214 0.06370 0.23617 0.57911 -0.38788 0.23394

13 0.00981 0.05540 0.19223 0.46450 -0.22017 0.21928

14 0.01743 0.03287 0.30427 0.45405 -0.21252 0.20886

15 0.02009 0.06659 0.18442 0.46718 -0.40922 0.20747

Table 14: Anchor fitting value of EMD.

Table 15: Anchor fitting value of VMD.

Pseudo-first 
moment
EEMD

Pseudo-second 
moment
EEMD

Pseudo-third 
moment
EEMD

Present 
method

1 76.7% 96.7% 100.0% 100.0%

2 83.3% 93.3% 97.2% 97.2%

3 70.0% 86.7% 94.4% 94.4%

4 76.7% 93.3% 100.0% 100.0%

5 90.0% 96.7% 94.4% 94.4%

6 83.3% 86.7% 97.2% 97.2%

7 70.0% 90.0% 100.0% 100.0%

8 80.0% 93.3% 97.2% 97.2%

9 76.7% 86.7% 100.0% 100.0%

10 73.3% 93.3% 94.4% 94.4%

Mean 
value

78.0% 91.7% 97.5% 97.5%

Table 16: Comparative results with different decomposition methods.

repeated ten times, respectively. Table 17 shows the accuracy 
rate and average results of the experiment.
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Original pseudo
fourth-order moment

Present method

1 95.8% 100.0%

2 91.7% 97.2%

3 100.0% 94.4%

4 91.7% 100.0%

5 95.8% 94.4%

6 87.5% 97.2%

7 100.0% 100.0%

8 95.8% 97.2%

9 100.0% 100.0%

10 95.8% 94.4%

Mean value 95.4% 97.5%

Table 17: Comparative results with original pseudo fourth-order 
moment.

Conclusion
Aiming at the fault diagnosis of rolling bearings, a new 

feature extraction method based on EEMD and improved PFOM 
is proposed. In the application of PFOM, it is innovatively 
associated with interpolation fitting. The concept of anchor point 
was first put forward. By introducing the anchor point into the 
fitting curve, the fitting value of the anchor point is regarded 
as the fault feature of the rolling bearing. This improvement 
greatly expands the application of pseudo four moments in fault 
diagnosis. In the final test, the average accuracy of classification 
by ELM reached 97.5%. The feasibility of this method is proved, 
and it can diagnose six working conditions of rolling bearings 
with high accuracy. This innovation has opened up new ideas 
for researchers in the field of fault diagnosis and played a certain 
role in promoting the development of the field.
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