
SAGA and CQRS Implementation Techniques for Distributed Transaction 
Management

Sriram Ghanta*

Citation: Ghanta S. SAGA and CQRS Implementation Techniques for Distributed Transaction Management. J Artif Intell Mach 
Learn & Data Sci 2018 1(1), 3203-3208. DOI: doi.org/10.51219/JAIMLD/sriram-ghanta/650

Received: 02 June, 2018; Accepted: 18 June, 2018; Published: 20 June, 2018

*Corresponding author: Sriram Ghanta, MTS III Consultant, India

Copyright: © 2018 Ghanta S., This is an open-access article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source 
are credited.

1

Research ArticleVol: 1 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/sriram-ghanta/650

 A B S T R A C T 
Modern distributed systems particularly those built using microservices must coordinate business operations that span multiple 

independently deployed services, each maintaining its own database and runtime environment. Achieving reliable transactional 
behavior across these boundaries, without introducing tight coupling or centralized control, presents a fundamental architectural 
challenge. Traditional ACID-based distributed transaction mechanisms like two-phase commit (2PC) depend on global locks 
and synchronous communication, which degrade performance, limit elasticity and reduce system availability as services scale 
horizontally. To address these limitations, system architects increasingly rely on the Saga pattern, which breaks a long-running 
business process into a series of autonomous local transactions coordinated either through a central orchestrator or through 
decentralized event choreography, with compensating actions to handle failures. In parallel, Command Query Responsibility 
Segregation (CQRS), combined with Event Sourcing, provides a scalable way to handle data consistency by separating write 
operations from read models and persisting state changes as immutable events. Together, Saga and CQRS/Event Sourcing offer 
complementary strategies that enable distributed applications to maintain integrity, support eventual consistency and achieve 
high levels of resilience and scalability in complex transactional workflows.

Keywords: Distributed transactions, Microservices, Saga pattern, CQRS, Event sourcing, Asynchronous messaging, Compensating 
transactions, Eventual consistency

1. Introduction
The rapid adoption of microservices architecture has 

fundamentally reshaped the design of modern enterprise 
systems. Unlike traditional monolithic applications that rely 
on a centralized relational database, microservices-based 
systems are decomposed into small, independently deployable 
services, each responsible for its own data and business logic. 
This decomposition enhances modularity, scalability and 
maintainability, enabling organizations to evolve their systems 
more flexibly and respond to changing business needs. However, 
distributing functionality and data ownership across multiple 
services introduces significant challenges in maintaining 

transactional integrity. Business operations frequently span 
multiple microservices, but traditional distributed transaction 
protocols most notably two-phase commit (2PC) are ill-suited 
to this environment. These protocols require strict coordination, 
synchronous communication and long-held locks, which degrade 
system responsiveness, limit scalability and weaken the inherent 
fault-tolerant characteristics expected from microservices.

The Saga pattern originally proposed for managing long-
running transactions in distributed database systems, offers a more 
suitable alternative for microservices. Instead of relying on global 
locks, Saga decomposes a large business transaction into a series 
of smaller, autonomous local transactions coordinated through 

https://doi.org/10.51219/JAIMLD/sriram-ghanta/650
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/rajalakshmi-thiruthuraipondi-natarajan/446
https://doi.org/10.51219/JAIMLD/sriram-ghanta/650


J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Ghanta S.,

2

messages or events. If any part of the workflow fails, previously 
completed steps are reversed using compensating transactions, 
achieving eventual consistency without requiring a centralized 
transaction manager. Complementing this, the Command Query 
Responsibility Segregation (CQRS) pattern frequently paired 
with Event Sourcing provides a robust mechanism for handling 
state changes in distributed environments. CQRS separates write 
operations (commands) from read operations (queries), allowing 
each side to scale independently and enabling denormalized 
models optimized for performance.

Event Sourcing further strengthens this model by persisting 
all state changes as immutable events, improving auditability, 
reproducibility and system transparency. Together, CQRS and 
Event Sourcing address the challenges of maintaining consistent 
and reliable state across microservices while preserving 
scalability and high availability. This article examines how 
Saga and CQRS/Event Sourcing can be jointly applied to 
implement reliable distributed transaction management within 
microservices-based systems. We outline their architectural 
principles, evaluate strengths and limitations and present 
implementation patterns that help balance business consistency, 
operational performance and system resilience.

2. Distributed Transactions and the Problem Space
Consider a typical business transaction such as placing an 

order in an e-commerce system. This seemingly simple action 
may involve a sequence of operations including updating 
inventory levels, reserving customer payments, generating 
shipping instructions, initiating fulfilment workflows and 
notifying downstream systems. In a microservices architecture, 
these responsibilities are distributed across independent services 
such as Inventory, Payment, Shipping and Notification. Because 
each service manages its own data and executes its own logic, 
the failure of any single operation such as a rejected payment 
must be handled gracefully. To maintain system integrity, 
compensating actions (e.g., releasing previously reserved 
inventory or cancelling shipping requests) must be executed to 
restore the system to a consistent state.

Traditional distributed transaction mechanisms such as 
two-phase commit (2PC) or XA transactions are ill-suited to this 
environment. These protocols rely on global locks, coordinated 
commit phases and synchronous blocking operations across 
multiple services characteristics that conflict with the principles 
of microservices, which prioritize autonomy, loose coupling, 
availability and scalability. Long-duration locking and tight 
coordination not only degrade performance but also reduce 
overall system resilience in the presence of failures.

The Saga pattern offers a more suitable alternative for 
managing multi-service transactional workflows. Instead of 
enforcing strict ACID guarantees across the entire distributed 
operation, Saga decomposes the business transaction into a 
sequence of smaller, local transactions that execute independently 
and communicate through events or messages. If an error occurs 
at any stage, previously completed actions are reversed through 
compensating transactions. This approach embraces eventual 
consistency, reduces coordination overhead and aligns naturally 
with asynchronous, message-driven microservices architectures.

While Saga addresses the flow of multi-step workflows, 
another challenge arises in read-heavy distributed systems: the 

need to maintain an accurate, up-to-date view of system state 
across services without imposing centralization or performance 
bottlenecks. This is where Command Query Responsibility 
Segregation (CQRS) and Event Sourcing provide significant 
advantages. CQRS improves scalability by separating read and 
write concerns into independent models, allowing each to be 
optimized differently. Event Sourcing enhances this model by 
persisting all changes as immutable events, enabling reliable 
reconstruction of service state, auditability and transparent 
synchronization across distributed components.

Together, the Saga pattern and CQRS/Event Sourcing 
enable robust distributed transaction management that supports 
autonomy, scalability and resilience core goals of microservices-
based system design.

3. The Saga Pattern
3.1. Concept

A Saga is conceptually defined as a sequence of coordinated 
local transactions, each executed by an independent service 
participating in a larger business workflow. After a service 
completes its local transaction successfully, it emits an event 
or message that triggers the subsequent step of the saga. This 
event-driven chaining of operations enables the entire multi-
service workflow to progress without requiring synchronous 
coordination.

Crucially, if any local transaction within the sequence 
fails, the saga initiates a set of compensating transactions that 
semantically undo the effects of all previously completed 
steps. These compensations restore the system to a consistent 
state without relying on global locks or tightly coupled commit 
protocols. By avoiding mechanisms such as distributed two-phase 
commit, the Saga pattern supports scalability, fault tolerance and 
loose coupling characteristics essential to microservices-based 
architectures (Figure 1).

Figure 1: Overview of Saga-based distributed transaction 
management.



3

Ghanta S., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

service does not bring down the entire system, as compensating 
actions restore consistency without requiring a global rollback 
mechanism (Microsoft Learn).

3.3.2. Trade-offs and challenges: Despite these advantages, 
the Saga pattern introduces several challenges. The most 
fundamental is eventual consistency the system may 
contain intermediate, inconsistent states until all steps and 
compensations have completed (Microsoft Learn). Additionally, 
implementing compensation logic can be complex, particularly 
when dealing with operations that involve external side effects 
or non-idempotent behavior. Another notable limitation is 
the lack of isolation: because each local transaction commits 
immediately, other services might observe partial results 
before the saga completes its full execution. As highlighted in 
recent studies, many real-world implementations struggle to 
fully address isolation guarantees and idempotency concerns, 
especially in large-scale microservices environments (MDPI; 
IRJET).

4. CQRS & Event Sourcing Complementing Saga for 
State Management

When employing the Saga pattern for distributed transaction 
coordination, it becomes equally important to adopt a scalable 
and maintainable approach for managing system state across 
services over time. This requirement is effectively addressed 
through the combined use of Command Query Responsibility 
Segregation (CQRS) and Event Sourcing, two architectural 
patterns that complement the asynchronous and decentralized 
nature of microservices.

CQRS introduces a clear separation between the WRITE 
side and the READ side of an application’s data model. The 
write model is responsible for processing commands, enforcing 
business rules and generating events, while the read model is 
dedicated solely to serving queries and is optimized for retrieval 
performance. This separation prevents read and write workloads 
from competing for the same data structures or storage 
resources, enabling each side to scale and evolve independently 
(Wikipedia).

Event Sourcing further enhances this model by replacing 
traditional state storage with an immutable log of domain events. 
Instead of persisting only the latest state, the system records 
every state-changing event in the order in which it occurred. The 
current state of the system can then be reconstructed by replaying 
these events, while specialized read models often referred to 
as projections or materialized views can be derived to support 
efficient querying. This approach provides a complete audit trail, 
enables temporal insights and facilitates flexible adaptation of 
read models as system requirements evolve (microservices.io; 
Medium).

Together, CQRS and Event Sourcing provide strong 
foundations for consistency, auditability and scalability in 
distributed systems, making them highly compatible with Saga-
based transaction flows (Figure 3).

4.4. Benefits & Trade-offs

The combination of CQRS and Event Sourcing provides a 
comprehensive set of advantages that make it especially effective 
for large-scale, distributed and microservices-based systems. 
One of the most significant benefits is enhanced scalability, 

3.2. Coordination Styles: Orchestration vs. Choreography

There are two primary mechanisms for coordinating the 
sequence of local transactions within a Saga: orchestration and 
choreography. Although both approaches enable distributed 
workflows without global locking, they differ significantly in 
structure and governance.

Orchestration relies on a central controller commonly 
referred to as the saga orchestrator that explicitly directs the 
workflow. The orchestrator determines the order of local 
transactions, instructs each participating service when to execute 
its operation, monitors the results and initiates compensating 
transactions in the event of a failure. This centralized control 
simplifies workflow visibility and oversight but introduces a 
single point of coordination that must be carefully designed to 
avoid becoming a bottleneck.

Choreography, by contrast, follows a decentralized model in 
which no central coordinator exists. Each service independently 
publishes domain events upon completing its local transaction. 
Other services subscribe to and react to these events, triggering 
subsequent steps in the workflow. This event-driven approach 
enhances autonomy and loose coupling among services but can 
make the global flow of the saga more difficult to trace, monitor 
and evolve as the system grows.

Both coordination styles offer unique advantages and their 
suitability depends on the complexity, governance needs and 
coupling constraints of the underlying microservices ecosystem.

Figure 2: Choreography-based Saga in microservices 
architecture.

3.3. Benefits and Trade-offs

3.3.1. Benefits: The Saga pattern offers several advantages 
that make it well-suited for microservices-based architectures. 
First, it eliminates the need for global locking mechanisms, 
thereby supporting the autonomy and independent scalability 
of distributed services (microservices.io; Medium). By 
decomposing a business workflow into smaller, independently 
executed local transactions, Saga enables long-running, multi-
service workflows that integrate asynchronously and incorporate 
compensating logic when failures occur (SciTePress). This design 
promotes system resilience and fault tolerance: a failure in one 



J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Ghanta S.,

4

achieved through the explicit separation of command-processing 
(writes) and query-handling (reads). This decoupling allows each 
side of the system to evolve, optimize and scale independently 
based on its unique workload characteristics. For example, 
read-intensive applications can leverage denormalized, query-
optimized projections that support high-volume, low-latency 
access patterns without placing competitive pressure on the 
write path (Wikipedia; DZone). This separation is particularly 
advantageous in cloud environments where services may auto 
scale independently based on their traffic profile.

Figure 3: CQRS + Event Sourcing architecture for distributed 
systems.

Event Sourcing amplifies these capabilities through its 
built-in auditability, temporal fidelity and system transparency. 
By persisting every state change as an immutable event rather 
than overwriting state, the system produces a complete and 
chronological record of all domain activity. This event log 
functions as a forensic data source, enabling developers to 
replay state transitions for debugging, reconstruct system 
behavior at specific points in time, conduct time-travel queries 
and reproduce read models when business requirements evolve 
capabilities almost impossible to achieve cleanly in traditional 
CRUD models (microservices.io). In regulated industries such 
as finance and healthcare, this historical traceability becomes a 
major architectural advantage due to compliance and auditing 
requirements.

Moreover, CQRS and Event Sourcing promote a high 
degree of loose coupling and service autonomy, qualities 
central to microservices architecture. Rather than sharing a 
common database a practice that leads to schema entanglement 
and cross-service dependencies services publish and consume 
domain events, enabling flexible asynchronous integration and 
polyglot persistence. This event-driven approach allows each 
service to maintain its own datastore and technology stack while 
still participating in distributed workflows, a design pattern 
frequently cited in microservices literature as a prerequisite for 
independent deployment and bounded contexts (IRJET).

However, these substantial benefits come with noteworthy 
architectural trade-offs. One of the most fundamental is 
eventual consistency, an inherent characteristic of distributed 
systems were read models naturally lag the write model. This 
lag introduces design challenges such as race conditions, stale 
reads and user-visible inconsistencies, all of which must be 
mitigated through compensatory UI strategies, reconciliation 
logic or asynchronous notifications (AKF Partners). Achieving 
correctness under eventual consistency requires a shift in both 
engineering mindset and product design.

Event Sourcing also introduces considerable implementation 
complexity, often underestimated by teams new to the pattern. 
Developers must design robust event stores, manage event 
versioning and schema evolution, construct and maintain 
projections, perform snapshotting for long-lived aggregates and 
ensure idempotent event processing across distributed nodes 
(Medium). Furthermore, as systems grow over time, the raw 
volume of stored events may increase dramatically, leading to 
performance overhead during state reconstruction, event replay 
or projection rebuilding. Without proactive measures such as 
snapshotting, stream compaction, partitioning or archival the 
event log can eventually become a bottleneck (microservices.
io).

These challenges emphasize that CQRS and Event Sourcing 
are not merely technical patterns but operationally intensive 
architectural commitments. They require strong observability 
practices, disciplined event modelling, governance over 
schema evolution and continuous monitoring of projection 
health and event-processing pipelines. When these principles 
are followed, however, CQRS combined with Event Sourcing 
offers a powerful foundation for building distributed systems 
that achieve high scalability, resilience, analytical richness and 
long-term maintainability.

5. Integrating Saga with CQRS/Event Sourcing 
Implementation Techniques

Given their complementary strengths, integrating the 
Saga pattern with CQRS and Event Sourcing yields a robust 
architectural model for managing distributed transactions in 
microservices-based systems. Each pattern addresses a distinct 
yet interrelated aspect of distributed coordination and state 
management and together they form a cohesive approach for 
ensuring both business consistency and operational scalability. 
First, the Saga pattern, whether implemented through 
orchestration or choreography, provides a reliable mechanism 
for coordinating multi-service transactions. It ensures that each 
step of a business workflow is executed in sequence and that 
compensating actions are applied when failures occur, thereby 
maintaining logical consistency without relying on global locks 
or tightly coupled transaction managers.

Within each participating service, CQRS combined with 
Event Sourcing offers a powerful strategy for managing state 
changes. CQRS isolates command processing from query 
operations, allowing each to be optimized independently. Event 
Sourcing reinforces this separation by persisting every state 
transition as an immutable event, enabling complete auditability, 
reproducibility and flexible construction of read models tailored 
to specific query workloads. To support both Saga coordination 
and event-driven state propagation, systems typically employ 
message brokers or event streaming platforms. These brokers 
facilitate reliable transmission of saga-related messages such 
as transaction steps, confirmations and failures as well as 
domain events used for Event Sourcing. This event-driven 
backbone enables services to remain loosely coupled while still 
collaborating effectively in distributed workflows.

However, successful adoption of this architectural style 
requires careful attention to idempotency, compensation 
logic and eventual consistency. Operations that interact with 
external systems such as payment gateways, shipping providers 
or third-party APIs must be designed defensively to handle 



5

Ghanta S., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

retries, duplicates and partial failures. Similarly, compensating 
transactions must be designed with semantic correctness to 
ensure that business invariants remain intact under both normal 
and failure scenarios. This integrated architecture is particularly 
valuable in domains such as order processing, payment 
orchestration, inventory management, booking platforms and 
other workflows where cross-service consistency is essential, 
but traditional global locking mechanisms are impractical. A 
review of existing literature including a 2017 survey examining 
Microservices, the Saga pattern and Event Sourcing highlights 
the increasing adoption and proven applicability of this combined 
approach in real-world distributed systems (IRJET).

6. Key Studies & Literature
A few prior studies and practitioner resources provide 

essential conceptual and empirical grounding for the use of 
Saga, CQRS and Event Sourcing in distributed systems. One 
notable work is the 2015 survey on Microservices, Saga Pattern 
and Event Sourcing, which offers a comprehensive overview 
of how these architectural patterns are applied in practice. The 
survey analyzes their benefits, limitations and adoption trends 
across real-world microservices implementations, highlighting 
the growing relevance of event-driven consistency mechanisms 
in distributed environments (IRJET).

Another significant contribution is the paper The Saga Pattern 
in a Reactive Microservices Environment, which compares 
Saga-based coordination to traditional two-phase commit (2PC) 
protocols. This study emphasizes the suitability of sagas for 
long-running, asynchronous and multi-service workflows and 
provides an evaluation of various Java-based saga frameworks 
used within reactive microservices ecosystems (SciTePress).

In addition to academic literature, numerous practitioner-
oriented articles and technical blogs offer valuable hands-on 
insights into implementing Saga, CQRS and Event Sourcing in 
production environments. These resources frequently address 
the practical challenges of designing compensating transactions, 
managing eventual consistency, ensuring idempotency and 
maintaining efficient read/write separation. Their experiential 
accounts serve as an important complement to formal research, 
illustrating how these patterns perform under real operational 
constraints (Medium).

Collectively, these studies and practitioner perspectives 
form a robust foundation for understanding and implementing 
distributed transaction management using Saga in combination 
with CQRS and Event Sourcing. They demonstrate the 
increasing maturity and widespread adoption of these patterns 
within modern microservices-based architectures.

7. Case Study: Distributed Order Processing in an 
E-Commerce Platform

To illustrate the practical application of Saga, CQRS and 
Event Sourcing in a real-world setting, consider a modern 
e-commerce platform responsible for processing customer orders 
across multiple autonomous microservices. The workflow begins 
when a customer submits an order through the Order Service. In 
a traditional monolithic system, the order submission, payment 
authorization, inventory reservation and shipping preparation 
would be wrapped in a single ACID transaction. However, in a 
microservices architecture, each function is owned by a separate 
service such as Inventory, Payment, Shipping and Notification 

each maintaining its own database and operational boundaries. 
Coordinating these actions reliably becomes a significant 
challenge in the presence of partial failures, latency spikes or 
temporary service unavailability.

In this implementation, the platform employs a Saga 
orchestration model within an Order Orchestrator Service. Upon 
receiving a new order request, the orchestrator first instructs the 
Inventory Service to reserve stock. Once successful, it commands 
the Payment Service to authorize the customer’s payment. If 
payment is approved, the orchestrator proceeds to trigger the 
Shipping Service to create a shipment request, followed by 
the Notification Service to generate customer updates. If any 
step fails such as a payment decline or insufficient stock the 
orchestrator invokes compensating transactions: previously 
reserved inventory is released, pending shipping tasks are 
cancelled and the customer is notified of the failure. This ensures 
that the global business workflow maintains logical consistency 
across services without relying on distributed locking or 
two-phase commit.

To support this workflow, each service adopts CQRS and Event 
Sourcing for managing state. For example, the Order Service 
processes “CreateOrder” commands, validates business rules 
and persists all state transitions as events such as OrderCreated 
orderApproved orderCanceled or OrderFailed. The write model 
focuses exclusively on processing these commands and emitting 
domain events, while the read model constructs optimized 
views for customer-facing interfaces, such as order status 
dashboards. These views materialized by projecting the event 
stream into query-friendly structures, enabling real-time updates 
while maintaining strong auditability. Similarly, the Inventory 
and Payment Services rely on event sourcing to record every 
state change, supporting replay-based recovery and providing 
a complete history of reservations, releases, authorizations and 
declines.

The platform’s event broker implemented using technologies 
such as Kafka or RabbitMQ acts as the backbone for all inter-
service communication. Saga events (successes, failures, 
compensations) are published to orchestrator topics, while 
domain events from each service propagate state changes across 
the system. This event-driven architecture promotes loose 
coupling, fault isolation and horizontal scalability, allowing 
each service to evolve independently without disrupting global 
workflows.

Operational metrics reinforce the advantages of this 
architectural model. The system demonstrates high resilience to 
partial service failures due to the compensating logic embedded 
in saga definitions. Read-side performance is significantly 
improved by the CQRS pattern, enabling user interfaces to 
respond rapidly using precomputed projections. Moreover, 
event sourcing provides robust auditing and traceability, 
allowing engineers to replay events to debug issues or 
reconstruct inconsistent states. This case study highlights how 
the coordinated use of Saga, CQRS and Event Sourcing provides 
a scalable, maintainable and resilient foundation for complex 
distributed business processes in microservices-based platforms.

8. Conclusion
The combined application of the Saga pattern with 

CQRS and Event Sourcing provides a robust and adaptable 



J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Ghanta S.,

6

architectural framework for managing distributed transactions in 
microservices-based systems. Saga enables the decomposition of 
global workflows into coordinated local transactions, eliminating 
the need for global locks or rigid two-phase commit protocols 
while preserving business consistency through compensating 
actions. Meanwhile, CQRS and Event Sourcing complement 
this coordination model by maintaining state changes in an 
immutable event log and separating command processing from 
query operations, thereby supporting auditability, scalability and 
flexible data representation.

Nonetheless, adopting this architectural approach requires 
organizations to embrace a fundamentally different consistency 
philosophy. Systems must be designed to operate under eventual 
consistency, with careful attention paid to idempotency, 
compensation logic and the complexities introduced by event-
driven communication including event versioning and schema 
evolution. These challenges demand rigorous engineering 
discipline but yield substantial long-term benefits in reliability, 
transparency and operational resilience.

As microservices architectures continue to proliferate across 
industries, the relevance of combining Saga with CQRS and 
Event Sourcing is expected to grow. This approach is particularly 
well-suited to domains involving long-running transactions, 
multi-service workflows and high scalability requirements. With 
ongoing advancements in event-driven platforms, distributed 
messaging systems and domain-driven design practices, the 
integration of these patterns will likely continue evolving, 
offering even more sophisticated solutions for dependable 
distributed transaction management.

9. References

1.	 https://microservices.io/patterns/data/event-sourcing.html

2.	 https://martinfowler.com/eaaDev/EventSourcing.html

3.	 https://martinfowler.com/bliki/CQRS.html

4.	 https://udidahan.com/2009/12/09/clarified-cqrs/

5.	 https://docs.microsoft.com/en-us/previous-versions/msp-n-p/
jj554200(v=pandp.10)

6.	 https://yos.io/2017/10/30/distributed-sagas/

7.	 https://en.wikipedia.org/wiki/Command%E2%80%93query_
responsibility_segregation

8.	 Jacobs FR, Weston FC. Enterprise resource planning (ERP)-A 
brief history. Journal of Operations Management, 2007;25: 
357-363. 

9.	 Dragoni N, Giallorenzo S, Lafuente AL, et al. Microservices: 
Yesterday, Today and Tomorrow. In Present and Ulterior 
Software Engineering, 2017: 195-216. 

10.	 Padur SKR. Online Patching and Beyond: A Practical Blueprint 
for Oracle EBS R12.2 Upgrades. International Journal of 
Scientific Research in Science, Engineering and Technology 
(IJSRSET), 2016;2: 1028-1039.

11.	 Padur SKR. Network Modernization in Large Enterprises: 
Firewall Transformation, Subnet Re-Architecture and Cross-
Platform Virtualization. In International Journal of Scientific 
Research & Engineering Trends, 2016;2.

12.	 Vishnubhatla S. Scalable Data Pipelines for Banking 
Operations: Cloud-Native Architectures and Regulatory-Aware 
Workflows. In International Journal of Science, Engineering and 
Technology, 2016;4.

https://microservices.io/patterns/data/event-sourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/bliki/CQRS.html
https://udidahan.com/2009/12/09/clarified-cqrs/
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/jj554200(v=pandp.10)
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/jj554200(v=pandp.10)
https://yos.io/2017/10/30/distributed-sagas/
https://en.wikipedia.org/wiki/Command%E2%80%93query_responsibility_segregation
https://en.wikipedia.org/wiki/Command%E2%80%93query_responsibility_segregation
https://onlinelibrary.wiley.com/doi/10.1016/j.jom.2006.11.005
https://onlinelibrary.wiley.com/doi/10.1016/j.jom.2006.11.005
https://onlinelibrary.wiley.com/doi/10.1016/j.jom.2006.11.005
https://link.springer.com/chapter/10.1007/978-3-319-67425-4_12
https://link.springer.com/chapter/10.1007/978-3-319-67425-4_12
https://link.springer.com/chapter/10.1007/978-3-319-67425-4_12
https://ijsrset.com/IJSRSET1848864
https://ijsrset.com/IJSRSET1848864
https://ijsrset.com/IJSRSET1848864
https://ijsrset.com/IJSRSET1848864
https://doi.org/10.5281/zenodo.17291987
https://doi.org/10.5281/zenodo.17291987
https://doi.org/10.5281/zenodo.17291987
https://doi.org/10.5281/zenodo.17291987
https://zenodo.org/records/17297958
https://zenodo.org/records/17297958
https://zenodo.org/records/17297958
https://zenodo.org/records/17297958

