ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/sriram-ghanta/650

;)/URF PUBLISHERS

C
V J .
=/ connect with research world

Journal of Artificial Intelligence, Machine Learning and Data Science

https://urfpublishers.com/journal/artificial-intelligence

Vol: 1 & Iss: 1 Research Article

SAGA and CQRS Implementation Techniques for Distributed Transaction
Management

Sriram Ghanta*

Citation: Ghanta S. SAGA and CQRS Implementation Techniques for Distributed Transaction Management. J Artif Intell Mach
Learn & Data Sci 2018 1(1), 3203-3208. DOI: doi.org/10.51219/JAIMLD/sriram-ghanta/650

Received: 02 June, 2018; Accepted: 18 June, 2018; Published: 20 June, 2018
*Corresponding author: Sriram Ghanta, MTS III Consultant, India

Copyright: © 2018 Ghanta S., This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

ABSTRACT

Modern distributed systems particularly those built using microservices must coordinate business operations that span multiple
independently deployed services, each maintaining its own database and runtime environment. Achieving reliable transactional
behavior across these boundaries, without introducing tight coupling or centralized control, presents a fundamental architectural
challenge. Traditional ACID-based distributed transaction mechanisms like two-phase commit (2PC) depend on global locks
and synchronous communication, which degrade performance, limit elasticity and reduce system availability as services scale
horizontally. To address these limitations, system architects increasingly rely on the Saga pattern, which breaks a long-running
business process into a series of autonomous local transactions coordinated either through a central orchestrator or through
decentralized event choreography, with compensating actions to handle failures. In parallel, Command Query Responsibility
Segregation (CQRS), combined with Event Sourcing, provides a scalable way to handle data consistency by separating write
operations from read models and persisting state changes as immutable events. Together, Saga and CQRS/Event Sourcing offer
complementary strategies that enable distributed applications to maintain integrity, support eventual consistency and achieve
high levels of resilience and scalability in complex transactional workflows.

Keywords: Distributed transactions, Microservices, Saga pattern, CQRS, Event sourcing, Asynchronous messaging, Compensating
transactions, Eventual consistency

transactional integrity. Business operations frequently span
multiple microservices, but traditional distributed transaction
protocols most notably two-phase commit (2PC) are ill-suited
to this environment. These protocols require strict coordination,

1. Introduction

The rapid adoption of microservices architecture has
fundamentally reshaped the design of modern enterprise

systems. Unlike traditional monolithic applications that rely
on a centralized relational database, microservices-based
systems are decomposed into small, independently deployable
services, each responsible for its own data and business logic.
This decomposition enhances modularity, scalability and
maintainability, enabling organizations to evolve their systems
more flexibly and respond to changing business needs. However,
distributing functionality and data ownership across multiple
services introduces significant challenges in maintaining

synchronous communication and long-held locks, which degrade
system responsiveness, limit scalability and weaken the inherent
fault-tolerant characteristics expected from microservices.

The Saga pattern originally proposed for managing long-
running transactions in distributed database systems, offers amore
suitable alternative for microservices. Instead of relying on global
locks, Saga decomposes a large business transaction into a series
of smaller, autonomous local transactions coordinated through

https://doi.org/10.51219/JAIMLD/sriram-ghanta/650
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/rajalakshmi-thiruthuraipondi-natarajan/446
https://doi.org/10.51219/JAIMLD/sriram-ghanta/650

Ghanta S.,

messages or events. If any part of the workflow fails, previously
completed steps are reversed using compensating transactions,
achieving eventual consistency without requiring a centralized
transaction manager. Complementing this, the Command Query
Responsibility Segregation (CQRS) pattern frequently paired
with Event Sourcing provides a robust mechanism for handling
state changes in distributed environments. CQRS separates write
operations (commands) from read operations (queries), allowing
each side to scale independently and enabling denormalized
models optimized for performance.

Event Sourcing further strengthens this model by persisting
all state changes as immutable events, improving auditability,
reproducibility and system transparency. Together, CQRS and
Event Sourcing address the challenges of maintaining consistent
and reliable state across microservices while preserving
scalability and high availability. This article examines how
Saga and CQRS/Event Sourcing can be jointly applied to
implement reliable distributed transaction management within
microservices-based systems. We outline their architectural
principles, evaluate strengths and limitations and present
implementation patterns that help balance business consistency,
operational performance and system resilience.

2. Distributed Transactions and the Problem Space

Consider a typical business transaction such as placing an
order in an e-commerce system. This seemingly simple action
may involve a sequence of operations including updating
inventory levels, reserving customer payments, generating
shipping instructions, initiating fulfilment workflows and
notifying downstream systems. In a microservices architecture,
these responsibilities are distributed across independent services
such as Inventory, Payment, Shipping and Notification. Because
each service manages its own data and executes its own logic,
the failure of any single operation such as a rejected payment
must be handled gracefully. To maintain system integrity,
compensating actions (e.g., releasing previously reserved
inventory or cancelling shipping requests) must be executed to
restore the system to a consistent state.

Traditional distributed transaction mechanisms such as
two-phase commit (2PC) or XA transactions are ill-suited to this
environment. These protocols rely on global locks, coordinated
commit phases and synchronous blocking operations across
multiple services characteristics that conflict with the principles
of microservices, which prioritize autonomy, loose coupling,
availability and scalability. Long-duration locking and tight
coordination not only degrade performance but also reduce
overall system resilience in the presence of failures.

The Saga pattern offers a more suitable alternative for
managing multi-service transactional workflows. Instead of
enforcing strict ACID guarantees across the entire distributed
operation, Saga decomposes the business transaction into a
sequence of smaller, local transactions that execute independently
and communicate through events or messages. If an error occurs
at any stage, previously completed actions are reversed through
compensating transactions. This approach embraces eventual
consistency, reduces coordination overhead and aligns naturally
with asynchronous, message-driven microservices architectures.

While Saga addresses the flow of multi-step workflows,
another challenge arises in read-heavy distributed systems: the

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

need to maintain an accurate, up-to-date view of system state
across services without imposing centralization or performance
bottlenecks. This is where Command Query Responsibility
Segregation (CQRS) and Event Sourcing provide significant
advantages. CQRS improves scalability by separating read and
write concerns into independent models, allowing each to be
optimized differently. Event Sourcing enhances this model by
persisting all changes as immutable events, enabling reliable
reconstruction of service state, auditability and transparent
synchronization across distributed components.

Together, the Saga pattern and CQRS/Event Sourcing
enable robust distributed transaction management that supports
autonomy, scalability and resilience core goals of microservices-
based system design.

3. The Saga Pattern
3.1. Concept

A Saga is conceptually defined as a sequence of coordinated
local transactions, each executed by an independent service
participating in a larger business workflow. After a service
completes its local transaction successfully, it emits an event
or message that triggers the subsequent step of the saga. This
event-driven chaining of operations enables the entire multi-
service workflow to progress without requiring synchronous
coordination.

Crucially, if any local transaction within the sequence
fails, the saga initiates a set of compensating transactions that
semantically undo the effects of all previously completed
steps. These compensations restore the system to a consistent
state without relying on global locks or tightly coupled commit
protocols. By avoiding mechanisms such as distributed two-phase
commit, the Saga pattern supports scalability, fault tolerance and
loose coupling characteristics essential to microservices-based
architectures (Figure 1).

(") POST forders

Creato Ordor Saga A"
Ry channcl_~

e

Customer

Order Service

Service

Distributed Transaction (2PC)

Order
Service

Customer
Service

N
\/,

Saga

Order
Service

Order
Service

Customer

Message/event Sarvics

Message/event
I

Local
Transaction

Local
Transaction

Local
Transaction

Figure 1: Overview of Saga-based distributed transaction
management.

Ghanta S.,

3.2. Coordination Styles: Orchestration vs. Choreography

There are two primary mechanisms for coordinating the
sequence of local transactions within a Saga: orchestration and
choreography. Although both approaches enable distributed
workflows without global locking, they differ significantly in
structure and governance.

Orchestration relies on a central controller commonly
referred to as the saga orchestrator that explicitly directs the
workflow. The orchestrator determines the order of local
transactions, instructs each participating service when to execute
its operation, monitors the results and initiates compensating
transactions in the event of a failure. This centralized control
simplifies workflow visibility and oversight but introduces a
single point of coordination that must be carefully designed to
avoid becoming a bottleneck.

Choreography, by contrast, follows a decentralized model in
which no central coordinator exists. Each service independently
publishes domain events upon completing its local transaction.
Other services subscribe to and react to these events, triggering
subsequent steps in the workflow. This event-driven approach
enhances autonomy and loose coupling among services but can
make the global flow of the saga more difficult to trace, monitor
and evolve as the system grows.

Both coordination styles offer unique advantages and their
suitability depends on the complexity, governance needs and
coupling constraints of the underlying microservices ecosystem.

@ rosi orcers -]

Order Created

V G

Order events channel

POST /customer (™)

Order

e g Customer

Service

<cangregate>>
Customer

Credit Resorved

\VS
//

~—
Secs
Credit Limit Exceeded
Gustormer events channel ; ;

<<<<<<<<

dWS Event-Driven Architecture
m Producer A Consumer A ‘ m
sas SNS MSK -
@ Producer B Event Routers
: e

m‘j Producer C el Consumer B Lk..'ﬂ
Figure 2: Choreography-based Saga in microservices
architecture.

3.3. Benefits and Trade-offs

3.3.1. Benefits: The Saga pattern offers several advantages
that make it well-suited for microservices-based architectures.
First, it eliminates the need for global locking mechanisms,
thereby supporting the autonomy and independent scalability
of distributed services (microservices.io; Medium). By
decomposing a business workflow into smaller, independently
executed local transactions, Saga enables long-running, multi-
service workflows that integrate asynchronously and incorporate
compensating logic when failures occur (SciTePress). This design
promotes system resilience and fault tolerance: a failure in one

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

service does not bring down the entire system, as compensating
actions restore consistency without requiring a global rollback
mechanism (Microsoft Learn).

3.3.2. Trade-offs and challenges: Despite these advantages,
the Saga pattern introduces several challenges. The most
fundamental is eventual consistency the system may
contain intermediate, inconsistent states until all steps and
compensations have completed (Microsoft Learn). Additionally,
implementing compensation logic can be complex, particularly
when dealing with operations that involve external side effects
or non-idempotent behavior. Another notable limitation is
the lack of isolation: because each local transaction commits
immediately, other services might observe partial results
before the saga completes its full execution. As highlighted in
recent studies, many real-world implementations struggle to
fully address isolation guarantees and idempotency concerns,
especially in large-scale microservices environments (MDPI;
IRJET).

4. CQRS & Event Sourcing Complementing Saga for
State Management

When employing the Saga pattern for distributed transaction
coordination, it becomes equally important to adopt a scalable
and maintainable approach for managing system state across
services over time. This requirement is effectively addressed
through the combined use of Command Query Responsibility
Segregation (CQRS) and Event Sourcing, two architectural
patterns that complement the asynchronous and decentralized
nature of microservices.

CQRS introduces a clear separation between the WRITE
side and the READ side of an application’s data model. The
write model is responsible for processing commands, enforcing
business rules and generating events, while the read model is
dedicated solely to serving queries and is optimized for retrieval
performance. This separation prevents read and write workloads
from competing for the same data structures or storage
resources, enabling each side to scale and evolve independently
(Wikipedia).

Event Sourcing further enhances this model by replacing
traditional state storage with an immutable log of domain events.
Instead of persisting only the latest state, the system records
every state-changing event in the order in which it occurred. The
current state of the system can then be reconstructed by replaying
these events, while specialized read models often referred to
as projections or materialized views can be derived to support
efficient querying. This approach provides a complete audit trail,
enables temporal insights and facilitates flexible adaptation of
read models as system requirements evolve (microservices.io;
Medium).

Together, CQRS and Event Sourcing provide strong
foundations for consistency, auditability and scalability in
distributed systems, making them highly compatible with Saga-
based transaction flows (Figure 3).

4.4. Benefits & Trade-offs

The combination of CQRS and Event Sourcing provides a
comprehensive set of advantages that make it especially effective
for large-scale, distributed and microservices-based systems.
One of the most significant benefits is enhanced scalability,

Ghanta S.,

achieved through the explicit separation of command-processing
(writes) and query-handling (reads). This decoupling allows each
side of the system to evolve, optimize and scale independently
based on its unique workload characteristics. For example,
read-intensive applications can leverage denormalized, query-
optimized projections that support high-volume, low-latency
access patterns without placing competitive pressure on the
write path (Wikipedia; DZone). This separation is particularly
advantageous in cloud environments where services may auto
scale independently based on their traffic profile.

Microservices with CQRS and Event Sourcing

‘Command Query End
Endpoint point
Order Microservice

Command |[Query
Read Storage

Query Command
Endpoint End point
7Y
Y
T,

Customer Microservice
Query Command
Service Service Event Store
QueryModz) Commera ot)
\—\
Event
‘ Event Consumer }—b
Consumer
/

Event Publisher
(Messaging [

system \

Comman Model) (_ Query Mogel

Event Publisher

\

Figure 3: CQRS + Event Sourcing architecture for distributed
systems.

Event Sourcing amplifies these capabilities through its
built-in auditability, temporal fidelity and system transparency.
By persisting every state change as an immutable event rather
than overwriting state, the system produces a complete and
chronological record of all domain activity. This event log
functions as a forensic data source, enabling developers to
replay state transitions for debugging, reconstruct system
behavior at specific points in time, conduct time-travel queries
and reproduce read models when business requirements evolve
capabilities almost impossible to achieve cleanly in traditional
CRUD models (microservices.io). In regulated industries such
as finance and healthcare, this historical traceability becomes a
major architectural advantage due to compliance and auditing
requirements.

Moreover, CQRS and Event Sourcing promote a high
degree of loose coupling and service autonomy, qualities
central to microservices architecture. Rather than sharing a
common database a practice that leads to schema entanglement
and cross-service dependencies services publish and consume
domain events, enabling flexible asynchronous integration and
polyglot persistence. This event-driven approach allows each
service to maintain its own datastore and technology stack while
still participating in distributed workflows, a design pattern
frequently cited in microservices literature as a prerequisite for
independent deployment and bounded contexts (IRJET).

However, these substantial benefits come with noteworthy
architectural trade-offs. One of the most fundamental is
eventual consistency, an inherent characteristic of distributed
systems were read models naturally lag the write model. This
lag introduces design challenges such as race conditions, stale
reads and user-visible inconsistencies, all of which must be
mitigated through compensatory Ul strategies, reconciliation
logic or asynchronous notifications (AKF Partners). Achieving
correctness under eventual consistency requires a shift in both
engineering mindset and product design.

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

Event Sourcing also introduces considerable implementation
complexity, often underestimated by teams new to the pattern.
Developers must design robust event stores, manage event
versioning and schema evolution, construct and maintain
projections, perform snapshotting for long-lived aggregates and
ensure idempotent event processing across distributed nodes
(Medium). Furthermore, as systems grow over time, the raw
volume of stored events may increase dramatically, leading to
performance overhead during state reconstruction, event replay
or projection rebuilding. Without proactive measures such as
snapshotting, stream compaction, partitioning or archival the
event log can eventually become a bottleneck (microservices.
10).

These challenges emphasize that CQRS and Event Sourcing
are not merely technical patterns but operationally intensive
architectural commitments. They require strong observability
practices, disciplined event modelling, governance over
schema evolution and continuous monitoring of projection
health and event-processing pipelines. When these principles
are followed, however, CQRS combined with Event Sourcing
offers a powerful foundation for building distributed systems
that achieve high scalability, resilience, analytical richness and
long-term maintainability.

5. Integrating Saga with CQRS/Event Sourcing
Implementation Techniques

Given their complementary strengths, integrating the
Saga pattern with CQRS and Event Sourcing yields a robust
architectural model for managing distributed transactions in
microservices-based systems. Each pattern addresses a distinct
yet interrelated aspect of distributed coordination and state
management and together they form a cohesive approach for
ensuring both business consistency and operational scalability.
First, the Saga pattern, whether implemented through
orchestration or choreography, provides a reliable mechanism
for coordinating multi-service transactions. It ensures that each
step of a business workflow is executed in sequence and that
compensating actions are applied when failures occur, thereby
maintaining logical consistency without relying on global locks
or tightly coupled transaction managers.

Within each participating service, CQRS combined with
Event Sourcing offers a powerful strategy for managing state
changes. CQRS isolates command processing from query
operations, allowing each to be optimized independently. Event
Sourcing reinforces this separation by persisting every state
transition as an immutable event, enabling complete auditability,
reproducibility and flexible construction of read models tailored
to specific query workloads. To support both Saga coordination
and event-driven state propagation, systems typically employ
message brokers or event streaming platforms. These brokers
facilitate reliable transmission of saga-related messages such
as transaction steps, confirmations and failures as well as
domain events used for Event Sourcing. This event-driven
backbone enables services to remain loosely coupled while still
collaborating effectively in distributed workflows.

However, successful adoption of this architectural style
requires careful attention to idempotency, compensation
logic and eventual consistency. Operations that interact with
external systems such as payment gateways, shipping providers
or third-party APIs must be designed defensively to handle

Ghanta S.,

retries, duplicates and partial failures. Similarly, compensating
transactions must be designed with semantic correctness to
ensure that business invariants remain intact under both normal
and failure scenarios. This integrated architecture is particularly
valuable in domains such as order processing, payment
orchestration, inventory management, booking platforms and
other workflows where cross-service consistency is essential,
but traditional global locking mechanisms are impractical. A
review of existing literature including a 2017 survey examining
Microservices, the Saga pattern and Event Sourcing highlights
the increasing adoption and proven applicability of this combined
approach in real-world distributed systems (IRJET).

6. Key Studies & Literature

A few prior studies and practitioner resources provide
essential conceptual and empirical grounding for the use of
Saga, CQRS and Event Sourcing in distributed systems. One
notable work is the 2015 survey on Microservices, Saga Pattern
and Event Sourcing, which offers a comprehensive overview
of how these architectural patterns are applied in practice. The
survey analyzes their benefits, limitations and adoption trends
across real-world microservices implementations, highlighting
the growing relevance of event-driven consistency mechanisms
in distributed environments (IRJET).

Another significant contribution is the paper The Saga Pattern
in a Reactive Microservices Environment, which compares
Saga-based coordination to traditional two-phase commit (2PC)
protocols. This study emphasizes the suitability of sagas for
long-running, asynchronous and multi-service workflows and
provides an evaluation of various Java-based saga frameworks
used within reactive microservices ecosystems (SciTePress).

In addition to academic literature, numerous practitioner-
oriented articles and technical blogs offer valuable hands-on
insights into implementing Saga, CQRS and Event Sourcing in
production environments. These resources frequently address
the practical challenges of designing compensating transactions,
managing eventual consistency, ensuring idempotency and
maintaining efficient read/write separation. Their experiential
accounts serve as an important complement to formal research,
illustrating how these patterns perform under real operational
constraints (Medium).

Collectively, these studies and practitioner perspectives
form a robust foundation for understanding and implementing
distributed transaction management using Saga in combination
with CQRS and Event Sourcing. They demonstrate the
increasing maturity and widespread adoption of these patterns
within modern microservices-based architectures.

7. Case Study: Distributed Order Processing in an
E-Commerce Platform

To illustrate the practical application of Saga, CQRS and
Event Sourcing in a real-world setting, consider a modern
e-commerce platform responsible for processing customer orders
across multiple autonomous microservices. The workflow begins
when a customer submits an order through the Order Service. In
a traditional monolithic system, the order submission, payment
authorization, inventory reservation and shipping preparation
would be wrapped in a single ACID transaction. However, in a
microservices architecture, each function is owned by a separate
service such as Inventory, Payment, Shipping and Notification

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

each maintaining its own database and operational boundaries.
Coordinating these actions reliably becomes a significant
challenge in the presence of partial failures, latency spikes or
temporary service unavailability.

In this implementation, the platform employs a Saga
orchestration model within an Order Orchestrator Service. Upon
receiving a new order request, the orchestrator first instructs the
Inventory Service to reserve stock. Once successful, it commands
the Payment Service to authorize the customer’s payment. If
payment is approved, the orchestrator proceeds to trigger the
Shipping Service to create a shipment request, followed by
the Notification Service to generate customer updates. If any
step fails such as a payment decline or insufficient stock the
orchestrator invokes compensating transactions: previously
reserved inventory is released, pending shipping tasks are
cancelled and the customer is notified of the failure. This ensures
that the global business workflow maintains logical consistency
across services without relying on distributed locking or
two-phase commit.

To supportthis workflow, eachserviceadopts CQRS and Event
Sourcing for managing state. For example, the Order Service
processes “CreateOrder” commands, validates business rules
and persists all state transitions as events such as OrderCreated
orderApproved orderCanceled or OrderFailed. The write model
focuses exclusively on processing these commands and emitting
domain events, while the read model constructs optimized
views for customer-facing interfaces, such as order status
dashboards. These views materialized by projecting the event
stream into query-friendly structures, enabling real-time updates
while maintaining strong auditability. Similarly, the Inventory
and Payment Services rely on event sourcing to record every
state change, supporting replay-based recovery and providing
a complete history of reservations, releases, authorizations and
declines.

The platform’s event broker implemented using technologies
such as Kafka or RabbitMQ acts as the backbone for all inter-
service communication. Saga events (successes, failures,
compensations) are published to orchestrator topics, while
domain events from each service propagate state changes across
the system. This event-driven architecture promotes loose
coupling, fault isolation and horizontal scalability, allowing
each service to evolve independently without disrupting global
workflows.

Operational metrics reinforce the advantages of this
architectural model. The system demonstrates high resilience to
partial service failures due to the compensating logic embedded
in saga definitions. Read-side performance is significantly
improved by the CQRS pattern, enabling user interfaces to
respond rapidly using precomputed projections. Moreover,
event sourcing provides robust auditing and traceability,
allowing engineers to replay events to debug issues or
reconstruct inconsistent states. This case study highlights how
the coordinated use of Saga, CQRS and Event Sourcing provides
a scalable, maintainable and resilient foundation for complex
distributed business processes in microservices-based platforms.

8. Conclusion

The combined application of the Saga pattern with
CQRS and Event Sourcing provides a robust and adaptable

Ghanta S.,

architectural framework for managing distributed transactions in
microservices-based systems. Saga enables the decomposition of
global workflows into coordinated local transactions, eliminating
the need for global locks or rigid two-phase commit protocols
while preserving business consistency through compensating
actions. Meanwhile, CQRS and Event Sourcing complement
this coordination model by maintaining state changes in an
immutable event log and separating command processing from
query operations, thereby supporting auditability, scalability and
flexible data representation.

Nonetheless, adopting this architectural approach requires
organizations to embrace a fundamentally different consistency
philosophy. Systems must be designed to operate under eventual
consistency, with careful attention paid to idempotency,
compensation logic and the complexities introduced by event-
driven communication including event versioning and schema
evolution. These challenges demand rigorous engineering
discipline but yield substantial long-term benefits in reliability,
transparency and operational resilience.

As microservices architectures continue to proliferate across
industries, the relevance of combining Saga with CQRS and
Event Sourcing is expected to grow. This approach is particularly
well-suited to domains involving long-running transactions,
multi-service workflows and high scalability requirements. With
ongoing advancements in event-driven platforms, distributed
messaging systems and domain-driven design practices, the
integration of these patterns will likely continue evolving,
offering even more sophisticated solutions for dependable
distributed transaction management.

9. References

1. https://microservices.io/patterns/data/event-sourcing.html

2. https://martinfowler.com/eaaDev/EventSourcing.html

10.

1.

12.

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

https://martinfowler.com/bliki/ CQRS.htmi
https://udidahan.com/2009/12/09/clarified-cqrs/

https://docs.microsoft.com/en-us/previous-versions/msp-n-p/
ji554200(v=pandp.10)

https://yos.io/2017/10/30/distributed-sagas/

https://en.wikipedia.org/wiki’fCommand%E2%80%93query_
responsibility _segregation

Jacobs FR, Weston FC. Enterprise resource planning (ERP)-A
brief history. Journal of Operations Management, 2007;25:
357-363.

Dragoni N, Giallorenzo S, Lafuente AL, et al. Microservices:
Yesterday, Today and Tomorrow. In Present and Ulterior
Software Engineering, 2017: 195-216.

Padur SKR. Online Patching and Beyond: A Practical Blueprint
for Oracle EBS R12.2 Upgrades. International Journal of
Scientific Research in Science, Engineering and Technology
(IUSRSET), 2016;2: 1028-1039.

Padur SKR. Network Modernization in Large Enterprises:
Firewall Transformation, Subnet Re-Architecture and Cross-
Platform Virtualization. In International Journal of Scientific
Research & Engineering Trends, 2016;2.

Vishnubhatla S. Scalable Data Pipelines for Banking
Operations: Cloud-Native Architectures and Regulatory-Aware
Workflows. In International Journal of Science, Engineering and
Technology, 2016;4.

https://microservices.io/patterns/data/event-sourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/bliki/CQRS.html
https://udidahan.com/2009/12/09/clarified-cqrs/
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/jj554200(v=pandp.10)
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/jj554200(v=pandp.10)
https://yos.io/2017/10/30/distributed-sagas/
https://en.wikipedia.org/wiki/Command%E2%80%93query_responsibility_segregation
https://en.wikipedia.org/wiki/Command%E2%80%93query_responsibility_segregation
https://onlinelibrary.wiley.com/doi/10.1016/j.jom.2006.11.005
https://onlinelibrary.wiley.com/doi/10.1016/j.jom.2006.11.005
https://onlinelibrary.wiley.com/doi/10.1016/j.jom.2006.11.005
https://link.springer.com/chapter/10.1007/978-3-319-67425-4_12
https://link.springer.com/chapter/10.1007/978-3-319-67425-4_12
https://link.springer.com/chapter/10.1007/978-3-319-67425-4_12
https://ijsrset.com/IJSRSET1848864
https://ijsrset.com/IJSRSET1848864
https://ijsrset.com/IJSRSET1848864
https://ijsrset.com/IJSRSET1848864
https://doi.org/10.5281/zenodo.17291987
https://doi.org/10.5281/zenodo.17291987
https://doi.org/10.5281/zenodo.17291987
https://doi.org/10.5281/zenodo.17291987
https://zenodo.org/records/17297958
https://zenodo.org/records/17297958
https://zenodo.org/records/17297958
https://zenodo.org/records/17297958

